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Abstract: We illustrate the power of symbolic computation and experimental mathematics by

investigating maximal seating arrangements, either on a line, or in a rectangular auditorium with

a fixed number of columns but an arbitrary number of rows, that obey any prescribed set of ‘social

distancing’ restrictions. In addition to enumeration, we study the statistical distribution of the

density, and give simulation algorithms for generating them.

Preface: How it all started

It all started when we came across the delightful article [PSZ] whose motivation had nothing to do

with the now fashionable social distancing. Their starting point was an r× s housing development

with rs building lots, each with room for a house. They wanted to enumerate the number of ways

(out of the total of 2rs possibilities, including building nothing, and building on all the lots) for

which

• No house is ‘blocked from the sun’ (see below).

• You can’t build any house on a currently empty lot without violating this condition.

They were not only interested in the number of such configurations, let’s call it T (r, s), but among

those, the statistical distribution of the number of houses, or equivalently, the density (the number

of houses divided by rs), in other words, the generating function, or weight-enumerator, of such

maximal configurations according to the weight zNnmberOfHouses.

It turns out that from an abstract point of view, this is nothing but enumerating maximal (w.r.t.

the number of ones) r × s 0− 1 matrices that avoid the pattern

1 1 1
1

.

In other words, 0− 1 matrices (aij) (1 ≤ i ≤ r, 1 ≤ j ≤ s) where it is forbidden to have a location

(i0, j0), where

ai0,j0−1 = 1 , ai0,j0 = 1 , ai0,j0+1 = 1 , ai0+1,j0 = 1 ,

and changing any of the entries that are currently 0 to 1, would create this undesirable pattern.

But why just this particular pattern? The question makes sense for enumerating such 0−1 matrices

avoiding any pattern, and in fact, any set of patterns.
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In particular this question has immediate relevance to social distancing. We have a rectangular

classroom with r rows, each with s seats, and you can’t have two students sitting next to each other

in the same row, or having anyone immediately in front of you, or behind you (i.e. you can’t have

any two students sitting next to each other in the same column). In addition none of the currently

empty seats can accommodate a newcomer without breaking this restriction. This is equivalent

to the problem of weight-enumerating r × s maximal (with respect to the number of ones) 0− 1

matrices avoiding the patterns

1 1 ,
1
1

.

The problem is already interesting for one row (equivalently one column), and one can impose lots

of possible restrictions. Going back to two dimensions, one can think of prohibiting the pattern

1 1
1 1

.

and the possibilities are endless.

The famous problem of maximal non-attacking kings can be formulated as counting (and weight-

counting according to the number of 1s) maximal r × s 0− 1 matrices avoiding the patterns

1 1 ,
1
1

,
1

1
,

1
1

.

We will probably never know the exact number of doing it for a 100 × 100 board, and in general,

for any fixed pattern, or set of patterns, the problem of enumerating such maximal 0 − 1 square

matrices, seems intractable. But thanks to the transfer matrix method one can efficiently find

explicit bi-variate generating functions for such enumeration problems with a fixed number of

columns, s (not too big, of course), but arbitrary number of rows r (or vice versa). So the problem

of enumerating (and weight-enumerating) maximal configurations of non-attacking kings, say on a

1000× 5 board can be found exactly.

To see their total number, and the number of these maximal placements with 668 kings (the smallest

possible number), see the following output file:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSDk5Story.txt .

We will now describe how to do it.

A Finite State Machine for Maximal Seating

Suppose that we have r rows of seats. We wish to compute the sequence giving the number of

maximal seating assignments as a function of the number of columns. As input we receive r, the

number of rows, and P, the set of patterns describing the shapes to be avoided.

There are 2 ways a seating arrangement can fail.
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• It may fail to meet the social distancing requirement. That is there may be some people sitting

in a place prohibited by one of the patterns. Call this a failure of type 1.

• It may fail to be maximal. That is there may be an empty seat which could be filled without

violating any of the patterns. Call this a failure of type 2.

We note that both of these problems are local. We don’t need to know the entire seating arrangement

to determine with certainty that a possible assignment is not valid. This allows us to create a finite

state machine with relative ease. We treat a seating arrangement as a sequence of columns. The

possible columns will serve as inputs to our state machine. Here, we represent a column as a binary

string of 0s and 1s of length r. The 1s correspond to occupied seats, and the 0s correspond to

empty seats. There are thus 2r possible symbols that our state machine must be able to process.

As we read in columns, we must determine whether the constraints have been satisfied so far. In

order to detect whether the proposed next column causes a violation, we need to store some data

about the preceding columns. In this case, we just need to store the contents of some number of

previous columns.

Definition: For a given pattern, p, define it’s width, w(p), to be the largest x-value of any of its

lattice coordinates minus the smallest x value. Define the width of our state machine, W (r,P) or

just W , to be the greatest width of all the pattern in P.

To check whether the proposed next column causes a violation of type 1, we need to have stored the

previous W columns. If we have that information stored, we can just loop through all the patterns

and check that each new 1 does not add a violation of that pattern shape.

To check whether the proposed next column causes a violation of type 2, we must be a bit more

clever. For each 0 that is added, there must be a group of nearby 1’s that ensures it cannot be

changed to a 1 without causing a violation. A 0 that has an appropriately shaped group of nearby

1s is called a satisfied 0. Since we do not know the contents of columns we might read in the future,

we are unable to determine whether the 0s in the current column are satisfied. Sure, they may not

be satisfied yet, but we should not consider them to be violations yet. If the current column is

column j, then we check that the 0s in column j −W are satisfied.

In total, we store the contents of the previous 2W columns in the state machine. Thus for column

j −W we know exactly the contents of the previous W columns and the next W columns so we

can determine with certainty whether the 0s are satisfied.

Since we require a state for each of the possible 2W previous columns, this gives a total of a 22Wr

possible states.

Now that we have constructed our set of states, it is simple to determine the transitions. For each

state, we have a transition for each possible next column. If the transition causes no violations,

it is valid, otherwise the state machine should immediately REJECT. Once a violation has been
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detected we do not need to look at any more columns.

When we are done reading our input, we must do a little more work to determine whether to

ACCEPT or REJECT. Specifically, the 0s in the most recent W −1 columns have not been checked

yet, so we must check that each is satisfied before accepting.

We also add some special initialization states for when the previous 2W columns do not have values

yet. The details of this are implementation specific and omitted.

Constructing the Transfer Matrix

Once the finite state machine has been constructed, we seek to count the number of input strings

of length n that cause the machine to ACCEPT. To do this we use the transfer matrix method.

Each state corresponds to a row and column of the matrix, M . Then the i, j entry M [i][j] is 1 if

there is a valid transition from state i to state j, and 0 otherwise.

We can count the number of paths from state i to state j of length s by computing Ms[i][j]. Thus

the number of maximal seating arrangements with s columns is given by an entry of the matrix

Ms. We just set i to be the initial state and j to be the final state of our state machine.

Density of Seating arrangements

We can modify the transition matrix by replacing each 1 with a power of z. For a transition

corresponding to adding a column with t 1s, the corresponding matrix entry will be zt. Then

Ms[i][j] is a polynomial in z. The coefficient of zk is the number of seating arrangements with a

total of k seats occupied.

Getting the bi-variate generating function

The previous section explained how to compute the transfer matrix, let’s call it MP,r(z), for any

set of patterns P, and any fixed number of rows r. Altogether it had, say, d, states, including the

two special states, the initial, and the final, that our program labeled 1 and d, respectively.

We are interested, for an arbitrary number of columns, s, in the weight-enumerator, let’s call it

WP,r,s(z), according to the weight zNumberOfOnes of all maximal r × s 0− 1 matrices avoiding P.

Define the bi-variate generating function

fP,r(z, x) :=

∞∑
s=0

WP,r,s(z)x
s .

Then we have

fP,r(z, x) = (I − xMP,r(z))−1[1, d] .

What’s nice about computer algebra is that it can all be streamlined.

Using this generating function, we can automatically compute the limiting average density (among
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maximal seatings) for a fixed r and arbitrary P, as s goes to infinity, namely

1

r
lim
s→∞

W ′P,r,s(1)

sWP,r,s(1)
.

We omit the details, since this is standard residue calculus, and the interested reader can look at

the Maple source code of procedure AsyAv(f,x,z) in the Maple package SD.txt, accompanying

this paper.

Random Sequential Adsorption

The polynomial WP,r,s(z) is the weight enumerator of maximal 0− 1 r× s matrices that avoid the

patterns in P. Hence the coefficient of zm in that polynomial is the exact number of such matrices

with exactly m ones (or equivalently the number of maximal seatings in an r by s classroom

obeying the restrictions in P and having exactly m occupied chairs). It follows that the probability

generating function (for the uniform distribution), let’s call it VP,r,s(z), is:

VP,r,s(z) =
WP,r,s(z)

WP,r,s(1)
,

and the expected number of occupied seats is d
dzVP,r,s(z)|z=1 = V ′P,r,s(1).

There is a quick way to generate random maximal seatings, described in the special case of T -

avoiding seatings in [PSZ], but that makes sense in general, called Random Sequential Adsorption,

that they abbreviated to RSA, but since for us RSA means ‘Rivest-Shamir-Adleman’, we will refrain

from using this abbreviation.

In that random-generation process, one picks, uniformly at random, a permutation of the rs initial

empty seats, representing rs people each having their favorite seat, all distinct from each other.

When someone enters the classroom they attempt to occupy their favorite seat, and do so if they

do not cause a violation. But if sitting there does create a violation, they are not allowed to sit

elsewhere and must leave the room (and cut the class).

This process is very easy to simulate, and it generates a random maximal seating. Alas, it is not

the uniform one. Thanks to our closed-form expressions for the probability distribution for r × s
maximal seatings with a fixed (not too big) r but arbitrarily large s, we were able to compare

notes, and estimate (via simulations) how close is random sequential adsorption to the uniform

distribution.

The Maple package SD.txt

This article is accompanied by a Maple package SD.txt, available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/SD.txt .

The front of this article
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https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/social.html ,

contains numerous sample output files, a selection of which we will describe next.

Output

Explicit Expressions for generating functions in One-Dimensional Seatings: Avoiding

b consecutive occupied seats

Let Ab(m,n) be the number of maximal 0− 1 vectors of length n with m ones (equivalently: sum

m), avoiding b consecutive 1’s, and let

fb(z, x) :=

∞∑
n=0

(
n∑

m=0

Ab(m,n) zm

)
xn ,

then we have

f2(z, x) = − x2z + xz + 1

x3z + x2z − 1
,

and the limiting average density is .4114955887 . . . .

f3(z, x) = −x
5z3 − x3z2 − x2z2 + x2z − xz − 1

x6z3 − x4z2 − x3z2 − x2z + 1
,

and the limiting average density is 0.5772029462 . . . .

f4(z, x) = −x
9z6 + x7z5 − x5z4 + x5z3 − 2x4z3 − x3z3 + x3z2 − x2z2 − xz − 1

x10z6 + x8z5 − x6z4 − 2x5z3 − x4z3 − x3z2 + 1

and the limiting average density is 0.6686427921 . . . .

f5(z, x) =

−x
14z10 − x11z8 − 2x9z7 + x9z6 − 2x8z6 + x6z5 − x6z4 + 2x5z4 + x4z4 − 2x4z3 + x3z3 − x3z2 + x2z2 + xz + 1

x15z10 − x12z8 − 2x10z7 − 2x9z6 + x7z5 + 2x6z4 + x5z4 + x4z3 + x3z2 − 1

and the limiting average density is 0.7269949175 . . . .

For f6(z, x), f7(z, x), f8(z, x), see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSD1.txt .

The limiting average densities are 0.7675902978, 0.7975140257, and 0.8205096203, respectively.
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Explicit Expressions for generating functions in One-Dimensional Seatings: Stricter

Social Distancing Restrictions

Suppose that, in a row of seats of length n, each person must have at least b empty seats on either

side, and let Cb(m,n) be the number of such maximal 0 − 1 vectors of length n and m 1s, and

define the bi-variate generating function:

gb(z, x) :=

∞∑
n=0

(
n∑

m=0

Cb(m,n) zm

)
xn .

To our pleasant surprise, there is an explicit expression not only in terms of z and x but also for

symbolic b. We leave it as challenge to the reader to prove it for arbitrary b.

Conjecture: For b ≥ 1,

gb(z, x) =
x2 b+2z − xb+1z − xb+2z + xz + (−1 + x)

2

(−1 + x) (−x2 b+2z + xb+1z + x− 1)
.

We confirmed it for b ≤ 8. See the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSD2.txt .

Avoiding Dimers in 3× s, 4× s, and 5× s, 0− 1 matrices

To see explicit expressions, limiting average densities, and comparison with Random Sequential

Adsorption simulation, for the 3× s case, see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSDd3.txt .

In particular, the bi-variate generating function for 3× s maximal dimer-avoiding 0− 1 matrices is:

−
(
2x5z4 + 2x3z3 + 2x2z3 − 6x2z2 − x z2 − xz − z − 1

)
xz

x5z4 + 2x4z4 − x4z3 + x3z4 − 4x3z3 − x2z3 − xz + 1
.

For similar information for the 4× s case, see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSDd4.txt ,

in particular, the bi-variate generating function for 4 × s maximal dimer-avoiding 0 − 1 matrices:

is,(
x6z6 − x5z6 + x5z5 − 2x5z4 − 3x4z4 + 2x3z4 − 7x3z3 + 2x3z2 − 4x2z3 + 7x2z2 − x z2 + 4xz + 3

)
x z2

x6z6 + x5z6 + x5z5 + 2x4z5 − x4z4 + 2x3z5 − 4x3z4 − x3z3 − 2x2z3 − x2z2 − x z2 + 1

For similar information for the 5× s case, see the output file:
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https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSDd5.txt .

Maximal Non-Attacking Kings

The generating function for maximal configurations of non-attacking kings on a 3× s chessboard is

−
(
x5z3 + x5z2 − x3z3 + x3z + 2x2z2 + x2z + x z2 − x2 − 3xz − 2x− z − 1

)
xz

x6z4 + x6z3 − x5z4 − x5z3 + x4z3 + x4z2 + x3z3 − x3z2 − x3z − x2z2 − x2z − xz + 1
.

For more details see: https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSDk3.txt .

The generating function for maximal configurations of non-attacking kings on a 4× s chessboard is

−
(
6x6z3 + 9x5z2 − 6x4z3 + 3x4z2 − 3x3z2 + 3x3z + 3x2z2 + 2x2z − 3x2 + 3xz − 12x− 3

)
x z2

6x7z5 − 6x6z5 + 9x6z4 − 6x5z4 + 3x4z4 + x4z3 + 3x3z3 − 6x3z2 − 4x2z2 − xz + 1
.

For more details see: https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSDk4.txt .

For the bi-variate generating function of maximal configurations of non-attacking kings on a 5× s
chessboard and more details, and results of simulations, see:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSDk5.txt .

See also the output files

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSD22C3.txt ,

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSD22C4.txt ,

for avoiding a 2× 2 block of ones.

Readers are welcome to generate more data, and experiment with other patterns (and set of pat-

terns) to their heart’s content, using the Maple package SD.txt. Enjoy!

The Uniform vs. the Random Sequential Adsorption Distributions

It seems much harder to get the exact probability generating functions for the density (equivalently,

the number of 1s) by using Random Sequential Adsorption in general, and we have to resort to

(very reliable!) simulations.

But for the very special case of seatings on a line with n seats, and avoiding the single pattern 11,

i.e. non adjacent seatings, we can get exact, closed-form expression for both the uniform and the

random sequential adsorption process.

Let gn(z) be the enumeration generating function, according to ‘number of occupied seats’ under

the uniform distribution, then as we saw above
∞∑

n=0

gn(z)xn = − x2z + xz + 1

x3z + x2z − 1
.
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Equivalently the sequence {gn(z)} satisfies the linear recurrence

gn(z) = z(gn−2(z) + gn−3(z)) ,

subject to the initial conditions

g0(z) = 1 , g1(z) = z , g2(z) = 2z .

To turn it into a probability generating function, we have to divide by gn(1) and define

Gn(z) :=
gn(z)

gn(1)
.

Recall that in random sequential adsorption the input is a permutation π. If π(1) = i then the

persons that like locations i − 1 and i + 1 would not be able to sit, since i is already occupied.

There are (n − 1)(n − 2) ways where they can be placed. The remaining students independently

seat in locations 1 ≤ x ≤ i − 2 and i + 2 ≤ x ≤ n and it follows that the probability generating

function, let’s call it Fn(z) (after dividing by n!), satisfies the non-linear recurrence

Fn(z) =
z

n

(
2Fn−2(z) +

n−1∑
i=2

Fi−2(z)Fn−i−1(z)

)
, n ≥ 2 ; F0(z) = 1 , F1(z) = z .

To get the expected number of occupied chairs under the uniform and the sequential adsorption dis-

tributions, we compute G′n(1) and F ′n(1) respectively, or more informatively, the densities G′n(1)/n

and F ′n(1)/n. They both converge to limits. The former can be found exactly. We have (as already

stated above, with less precision, the number is a certain algebraic number)

lim
n→∞

G′n(1)

n
= 0.411495588662645763381900381335531940800608649354765817635803356939840 . . .

The other limit we estimated numerically. we have (by taking large n)

lim
n→∞

F ′n(1)

n
≈ 0.4323 . . . ,

agreeing with the exact value (1 − e−2)/2 stated in Steven Finch’s wonderful book [F] (section

5.3.1) and due to several people (see [F] for references).

Hence the average occupation densities, for large n, of the random sequential adsorption process

is approximately 1.052 times those of the uniform distribution. Of course, the maximal density,

obtained by the regular spacing 101010 . . . is 0.5.
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Conclusion

In this case study, we illustrated the power of symbolic computation and experimental mathematics,

both so dear to Marko Petkovsek, to get insight about the statistics of maximal seating arrangements

avoiding any set of social distancing restrictions.
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