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Abstract: We use the algebra of difference operators to study sums of squares (and other powers) of
the characters of the symmetric group, χλ(µ), when the sum is restricted over shapes, λ, with a fixed
number of rows, and for hook shapes, and µ has ‘mostly’ ones. We prove that such sums are always
P-recursive, i.e., satisfy a linear difference equation with polynomial coefficients. For the special case
of two rows, and for hook-shapes, we prove that these sums are in fact closed-form, and we present
algorithms, complete with rigorous proofs, for finding these expressions.This article is accompanied
by a Maple package, Sn (available from http://www.math.rutgers.edu/~zeilberg/tokhniot/Sn),
and a webpage, http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/sn.html, with
links to extensive output, containing rigorously-proved explicit formulas for many cases.

Introduction

The notion of group character, introduced by Frobenius, is a fundamental one in representation
theory, and among all groups, the symmetric group, Sn, is the most fundamental one. The entries
of the character tables of the symmetric group may be defined in numerous ways, but for our
purposes, we will use the following definition, that does not require any knowledge of ‘advanced’
algebra, high-school algebra suffices!

Recall that the Constant Term of a Laurent polynomial in (x1, . . . , xm) is the free term, i.e. the
coefficient of x0

1 · · ·x0
m. For example

CTx1,x2(x−3
1 x2 + x1x

−2
2 + 5) = 5 .

Recall that a partition (alias shape) of an integer n, with m parts (alias rows), is a non-increasing
sequence of positive integers

λ = (λ1, . . . , λm) ,

where λ1 ≥ λ2 ≥ . . . ≥ λm > 0, and λ1 + . . .+ λm = n.

If λ = (λ1, . . . , λm) and µ = (µ1, . . . , µr) are partitions of n with m and r parts, respectively, then
it easily follows from (7.8) (p. 114) in [M], that the characters, χλ(µ), of the symmetric group, Sn,
may be obtained by the constant term expression

χλ(µ) = CTx1,...,xm

∏
1≤i<j≤m(1− xj

xi
)
∏r
j=1

(∑m
i=1 x

µj
i

)∏m
i=1 x

λi
i

. (Chi)

It is well-known (e.g. [M], p. 119, bottom line) that, writing µ in frequency notation, µ =
1a12a2 . . . nan , we have the following beautiful identity:∑

λ`n

χλ(µ)2 =
n∏
i=1

iaiai! .
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The most famous special case is when µ = 1n, that becomes (since χλ(1n) = fλ, the number of
Standard Young Tableaux of shape λ), the identity:∑

λ`n

f2
λ = n! ,

that has a lovely combinatorial proof using the celebrated Robinson-Schensted correspondence
([Ro][Sc]). A bijective proof of the former, more general, identity was given by Dennis White
([Wh]).

If one restricts the latter sum to go over partitions with at most a fixed number of parts, then one
gets many sequences of combinatorial interest. Most notably, for a fixed r ≥ 1,

a(r)(n) :=
∑
λ`n

length(λ)≤r

f2
λ ,

is the number of permutations of length n that do not contain an increasing subsequence of length
r + 1. The sequences a(r)(n) are (as of July 8, 2015) in [Sl] for r ≤ 11. Note that a(2)(n) is the
super-famous sequence A000108, of Catalan numbers, Cn := 1

n+1

(
2n
n

)
.

In [Z1] it was proved that, for any fixed r, the sequence a(r)(n) is P -recursive (alias holonomic), i.e.
satisfies a linear difference equation (alias linear recurrence equation) with polynomial coefficients.
We should also mention that Ira Gessel ([Ge]) famously discovered a lovely determinant formula
for the generating functions in terms of Bessel functions.

The analogous sequences, for the straight sums (without the squares),

b(r)(n) :=
∑
λ`n

length(λ)≤r

fλ ,

are also of combinatorial interest, counting the number of involutions of length n avoiding an
increasing subsequence of length r + 1. It is well known, and easy to prove, that b(2)(n) =

(
n
bn/2c

)
,

that is sequence A001405 in [Sl]. Much deeper is the result, first proved in [Re], that b(3)(n) are
the Motzkin numbers, A001006 (see [Z2] for another proof and for a generalization). The sequence
b(4)(n), A005817, is even nicer, given in terms of Catalan numbers, b(4)(n) = Cbn/2+1/2cCbn/2+1c,
as first proved by Dominique Gouyou-Beauchamps ([Go]). b(5)(n) is A049401, while b(6)(n) is
A007579. See also [BFK].

Recall ([Z1]) that a discrete function a(n) of a single variable is called holonomic (or P -recursive) if
it satisfies a homogeneous linear recurrence (alias difference) equation with polynomial coefficients,
i.e. there exists an integer L and polynomials p0(n), . . . , pL(n), such that

L∑
i=0

pi(n)a(n+ i) = 0 , (n ≥ 0) .

A discrete function of several variables a(n1, . . . , nm) is holonomic if it satisfies such a recurrence in
each of its variables, n1, . . . , nm and the coefficients are polynomials in all of them, and the system
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is non-degenerate. It was proved in [Z1] that if you sum such a holonomic discrete function over
some of its arguments, you get yet-another holonomic function in the surviving variables.

As mentioned in [Z1], the reason that a(r)(n) and b(r)(n) (and more generally, sums of powers fsλ,
where s is any positive integer), for any specific, r, are P -recursive in n is that the summand, fλ =
f(λ1, . . . , λr), and hence any of its powers, is holonomic in its arguments, and hence the (r−1)-fold
multisum is guaranteed to be holonomic in the ‘surviving’ discrete variable n. Furthermore, thanks
to the hook-length formula ([Wi]), or equivalently the Young-Frobenius formula, the summand
f(λ1, . . . , λr) can be expressed as

f(λ1, . . . , λr) =

∏
1≤i<j≤r(λj − λi + j − i)(

∑r
i=1 λi)!∏r

i=1(λi + r − i)!
.

In addition, thanks to [AZ], there are effective algorithms for finding these recurrences, implemented
in the Maple package
http://www.math.rutgers.edu/~zeilberg/tokhniot/MultiZeilberger .

However, it is much more efficient to derive these recurrences by generating sufficiently many terms,
and then guessing the linear recurrence, that we know for sure exists, by undetermined coefficients.
These recurrences can be proved fully rigorously, if desired, but since they are definitely true, we
do not bother to waste time on this.

More generally, one can consider such sums where the shape λ belongs to a “meta-hook” with k

rows and l columns, in other words, the analogous sums (see [BR] and [EZ]) where one sums fλ (or
its square, or any positive integer power), over all shapes, that do not contain the celll (k+1, l+1).
Such a shape is determined by k + l parameters, the lengths of the k largest rows and the lengths
of the l largest columns, and, once again, using the Hook Length Formula, one can express fλ as
a closed-form expression in these k + l discrete parameters, and the above observations about the
resulting sequences, for each fixed (k, l), being holonomic, still apply.

Character Sums for µ ‘Close’ to 1n

For any partition λ, let |λ| be its sum, in other words, the integer that is being partitioned.

As we noted above, fλ equals χλ(1n). The first purpose of the present paper is merely to observe,
that an analogous argument still applies if one replaces µ = 1n by µ = µ01n−|µ0|, for any fixed
partition µ0 (with smallest part at least 2), the analogous sums with fλ replaced by χλ(µ01n−|µ0|)
are also guaranteed to be holonomic. This follows from Eq. (Chi), that spells out to be, writing
µ0 = (a1, . . . , ak) (ak ≥ 2).

χλ(µ01n−|µ0|) = CTx1,...,xm

∏
1≤i<j≤m(1− xj

xi
)
∏k
j=1

(∑m
i=1 x

aj
i

)
· (
∑m
i=1 xi)

n−a1−...−ak∏m
i=1 x

λi
i

.

(Chi0)
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Expanding ∏
1≤i<j≤m

(1− xj
xi

)
k∏
j=1

(
m∑
i=1

x
aj
i

)
,

we get, for fixed m, k, and µ0 = (a1, . . . , ak), a finite sum of monomials, and collecting the
contributions of each, we get a finite linear combination of shifts of the multinomial coefficient
(λ1 + . . . + λm)!/(λ1! · · ·λm!), and it is easy to see that the result is a rational function times the
latter (with ‘nice’ denominator), and hence closed-form.

The analogous argument for sums over shapes contained in a meta-hook H(k, l) is slightly more
complicated, and is omitted.

The second purpose of the present paper is to observe that, for the special cases of shapes with at
most 2 rows, defining

ψ(2)(µ) :=
bn/2c∑
j=0

χ(n−j,j)(µ)2 ,

for any fixed partition µ0 (with smallest part≥ 2), there is a closed-form expression for ψ(2)(µ01n−|µ0|),
of the form

ψ(2)(µ01n−|µ0|) = Rµ0(n)
(

2n
n

)
,

for some rational function Rµ0(n). The reason is that in the two-rowed case, χ(n−j,j)(µ01n−µ0)
can be expressed (thanks to Eq. (Chi)) as a linear combination of shifts of the binomial coefficients(
n
j

)
, and squaring it and expanding, gives (possibly many, but still finitely-many) expressions of

the form
bn/2c∑
j=0

(
n− α
j − β

)(
n− α′

j − β′

)
, (α+ α′ = |µ0|) ,

each of which (after symmetrizing in order to make the summations range over all −∞ < j < ∞
[with the usual convention that

(
a
b

)
is 0 if a < b and if b < 0]) is summable by the Vandermonde-Chu

convolution ∑
j

(
n− α
j − β

)(
n− α′

j − β′

)
=
(

2n− α− α′

n+ β′ − α′ − β

)
,

each of which is a multiple of
(
2n
n

)
by a certain rational function, and adding these finitely (but

possibly numerous) terms, still adds up to a certain rational function times
(
2n
n

)
.

Analogously, for shapes inside the (1, 1)-meta hook

φ(2)(µ) :=
n∑
j=1

χ(j,1n−j)(µ)2 ,

since χ(j,1n−j)(1n) =
(
n−1
j−1

)
(as follows easily from (Chi) specialized to this case), χ(j,1n−j)(µ01n−|µ0|)

can be expressed as a finite linear combinations of
(
n−1−α
j−1−β

)
, once again we get a finite linear com-

bination of Vandermonde-Chu convolutions, each of them being a multiple of
(
2n−2
n−1

)
by a certain
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rational function (equivalently, we can use
(
2n
n

)
, as above, but it is more natural to use the former

as the “base”, since it is the answer for µ = 1n, i.e. where µ0 is the empty partition).

In fact, in this case we can get nice explicit expressions for the generation functions (recall that
µ0 = (a1, . . . , ar))

Fn;(a1,...,ar)(x) :=
n∑
j=1

χ(j,1n−j)(µ01n−|µ0|)xj = x(1 + x)n−1−|µ0|
r∏
i=1

(xai − (−1)ai) .

Hence

φ(2)(µ01n−|µ0|) =
n∑
j=1

χ(j,1n−j)(µ01n−|µ0|)2

is the constant term of
Fn;(a1,...,ar)(x) · Fn;(a1,...,ar)(x

−1) =

x(1 + x)n−1−a1−...−ar

(
r∏
i=1

(xai − (−1)ai)

)
· x−1(1 + x−1)n−1−a1−...−ar

(
r∏
i=1

(x−ai − (−1)ai)

)
.

=
(1 + x)2n−2−2|µ0|

xn−1−|µ0|
·Q(x) ,

where Q(x) is the symmetric Laurent polynomial

Q(x) =
r∏
i=1

(xai − (−1)ai)(x−ai − (−1)ai) .

Expanding Q(x) as a sum of monomials and extracting the respective coefficients, we get a linear
combination of terms of the form

(
2(n−1−|µ0|)
n−1−|µ0|−j

)
, that obviously simplifies to a rational function times(

2n−2
n−1

)
. [This is implemented in procedure Phi2 in the Maple package Sn].

Implementation

Everything discussed here is implemented in the Maple package Sn, available from the front of the
present paper

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/sn.html ,

where one can find several sample input and output files, that readers are welcome to extend.

Some Output

I. Explicit Expressions for φ(2)
n (µ01n−|µ0|)

The classical case is well-known, and easy.

φ(2)
n (1n) =

(
2n− 2
n− 1

)
.
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We also have

φ(2)
n (21n−2) =

1
2n− 3

(
2n− 2
n− 1

)
(= 2Cn−2) ,

φ(2)
n (221n−4) =

3
(2n− 3) (2n− 5)

(
2n− 2
n− 1

)
.

More generally, for r ≥ 0, we have:

φ(2)
n (2r1n−2r) =

(2r)!(2n− 2r − 2)!
r!(n− 1)!(n− r − 1)!

.

Also

φ(2)
n (31n−3) =

n2 − 7n + 18
4 (2n− 3) (2n− 5)

(
2n− 2
n− 1

)
,

φ(2)
n (41n−4) =

n2 − 9n+ 23
(2n− 3) (2n− 5) (2n− 7)

(
2n− 2
n− 1

)
,

φ(2)
n (51n−5) =

n4 − 22n3 + 239n2 − 1298n+ 2760
16 (2n− 3) (2n− 5) (2n− 7) (2n− 9)

(
2n− 2
n− 1

)
,

φ(2)
n (321n−5) =

n2 − 15n+ 74
4 (2n− 3) (2n− 5) (2n− 7)

(
2n− 2
n− 1

)
.

For all the (proved!) explicit expressions for φ(2)
n (µ01n−|µ0|), with |µ0| ≤ 14 (and, of course, the

smallest part of µ0 larger than one) (135 cases altogether), see the output file:

http://www.math.rutgers.edu/~zeilberg/tokhniot/oSn1 .

II. Explicit Expressions for ψ(2)
n (µ01n−|µ0|)

The classical case is well-known, and easy.

ψ(2)
n (1n) =

1
n+ 1

(
2n
n

)
(= Cn) .

We have:

ψ(2)
n (21n−2) =

9− 5n+ n2

(2n− 1) (2n− 3) (n+ 1)

(
2n
n

)
,

ψ(2)
n (31n−3) =

48− 11n+ n2

4 (2n− 1) (2n− 3) (n+ 1)

(
2n
n

)
,

Note the remarkable (proved!) identity:

ψ(2)
n (31n−3) =

1
2
φ

(2)
n+2(321n−3) .

It may be interesting to find a ‘natural’ reason for this ‘coincidence’.
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We also have:

ψ(2)
n (41n−4) =

2100− 1354n+ 299n2 − 26n3 + n4

4 (2n− 1) (2n− 3) (2n− 5) (2n− 7) (n+ 1)

(
2n
n

)
,

ψ(2)
n (221n−4) =

525− 316n+ 89n2 − 14n3 + n4

(2n− 1) (2n− 3) (2n− 5) (2n− 7) (n+ 1)

(
2n
n

)
,

ψ(2)
n (51n−5) =

10080− 4342n+ 659n2 − 38n3 + n4

16 (2n− 1) (2n− 3) (2n− 5) (2n− 7) (n+ 1)

(
2n
n

)
,

ψ(2)
n (321n−5) =

2520− 1045n+ 194n2 − 20n3 + n4

4 (2n− 1) (2n− 3) (2n− 5) (2n− 7) (n+ 1)

(
2n
n

)
.

For all the (proved!) explicit expressions for ψ(2)
n (µ01n−|µ0|), with |µ0| ≤ 14 (and, of course, the

smallest part of µ0 larger than one) (135 cases altogether), see the output file:

http://www.math.rutgers.edu/~zeilberg/tokhniot/oSn2 .

Sums over shapes with more rows

For three and more rows, the sums are no longer closed-form, but, as we mentioned above, they
always satisfy a linear recurrence (alias difference) equation with polynomial coefficients, see the
output files linked to in the above-mentioned webpage of this article.

Conclusion

On page 155 of [GPK] it says:

“The numbers in Pascal’s triangle satisfy, practically speaking, infinitely many identities, so it is
not too surprising that we can find some surprising relationships by looking closely.”

The aim of this note was to indicate that a similar statement seems to hold for the character tables
of the symmetric groups Sn. Just as importantly, it was a case-study in using a computer algebra
system to prove deep identities, way beyond the ability of mere humans.
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