Abstract: In a recent article, we noted (and proved) that the sum of the squares of the characters of the symmetric group, \(\chi^{\lambda}(\mu) \), over all shapes \(\lambda \) with two rows and \(n \) cells and \(\mu = 31^{n-3} \), equals, surprisingly, to \(1/2 \) of that sum-of-squares taken over all hook shapes with \(n+2 \) cells and with \(\mu = 321^{n-3} \). In the present note, we show that this is only the tip of a huge iceberg! We will prove that if \(\mu \) consists of odd parts and (a possibly empty) string of consecutive powers of 2, namely \(2, 4, \ldots, 2^{t-1} \) for \(t \geq 1 \), then the the sum of \(\chi^{\lambda}(\mu)^2 \) over all two-rowed shapes \(\lambda \) with \(n \) cells, equals exactly \(1/2 \) times the analogous sum of \(\chi^{\lambda}(\mu')^2 \) over all shapes \(\lambda \) of hook shape with \(n+2 \) cells, and where \(\mu' \) is the partition obtained from \(\mu \) by retaining all odd parts, but replacing the string \(2, 4, \ldots, 2^{t-1} \) by \(2^t \).

Recall that the Constant Term of a Laurent polynomial in \((x_1, \ldots, x_m)\) is the free term, i.e. the coefficient of \(x_1^0 \cdots x_m^0 \). For example

\[
CT_{x_1, x_2}(x_1^{-3} x_2 + x_1 x_2^{-2} + 5) = 5 .
\]

Recall that a partition (alias shape) of an integer \(n \), with \(m \) parts (alias rows), is a non-increasing sequence of positive integers

\[
\lambda = (\lambda_1, \ldots, \lambda_m) ,
\]

where \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m > 0 \), and \(\lambda_1 + \ldots + \lambda_m = n \).

If \(\lambda = (\lambda_1, \ldots, \lambda_m) \) and \(\mu = (\mu_1, \ldots, \mu_r) \) are partitions of \(n \) with \(m \) and \(r \) parts, respectively, then it easily follows from (7.8) (p. 114) in [M], that the characters, \(\chi^{\lambda}(\mu) \), of the symmetric group, \(S_n \), may be obtained via the constant term expression

\[
\chi^{\lambda}(\mu) = CT_{x_1, \ldots, x_m} \left(\prod_{1 \leq i < j \leq m}(1 - \frac{x_j}{x_i}) \prod_{j=1}^{m} \left(\sum_{i=1}^{m} x_i^{\mu_j} \right) \right) .
\]

(Chi)

As usual, for any partition \(\mu \), \(|\mu| \) denotes the sum of its parts, in other words, the integer that is being partitioned.

In [RRZ] we considered two quantities. Let \(\mu_0 \) be any partition with smallest part \(\geq 2 \). The first quantity, that we will call henceforth \(A(\mu_0)(n) \), is the following sum-of-squares over two-rowed shapes \(\lambda \):

\[
A(\mu_0)(n) := \sum_{j=0}^{[n/2]} \chi^{(n-j,j)}(\mu_0 1^{n-|\mu_0|})^2 .
\]

[Note that in [RRZ] this quantity was denoted by \(\psi^{(2)}(\mu_0 1^{n-|\mu_0|}) \).]
The second quantity was the sum-of-squares over hook-shapes

\[B(\mu_0)(n) := \sum_{j=1}^{n} \chi(j,1^{n-j})(\mu_0 1^{n-|\mu_0|})^2 \, . \]

[Note that in RRZ this quantity was denoted by \(\phi^{(2)}(\mu_0 1^{n-|\mu_0|}) \).]

In RRZ we developed algorithms for discovering (and then proving) closed-form expressions for these quantities, for any given (specific) finite partition \(\mu_0 \) with smallest part larger than one. In fact we proved that each such expression is always a multiple of \(\binom{2n}{n} \) by a certain rational function of \(n \) that depends on \(\mu_0 \).

Unless \(\mu_0 \) is very small, these rational functions turn out to be very complicated, but, inspired by the OEIS([S]), Alon Regev noted (and then it was proved in RRZ) the remarkable identity

\[A(3)(n) = \frac{1}{2} B(3, 2)(n + 2) \, . \]

This lead to the following natural question:

Are there other partitions, \(\mu_0 \), such that there exists a partition, \(\mu'_0 \) with \(|\mu'_0| = |\mu_0| + 2 \), such that the ratio \(A(\mu_0)(n)/B(\mu'_0)(n + 2) \) is a constant?

This lead us to write a new procedure in the Maple package

http://www.math.rutgers.edu/~zeilberg/tokhniot/Sn.txt , that accompanies RRZ,

called SeferNisim(K,N0), that searched for such pairs \([\mu_0, \mu'_0]\). We then used our human ability for pattern recognition to notice that all the successful pairs (we went up to \(|\mu_0| \leq 20 \)) turned out to be such that \(\mu_0 \) either consisted of only odd parts, and then \(\mu'_0 \) was \(\mu_0 \) with 2 appended, or, more generally \(\mu_0 \) consisted of odd parts together with a string of consecutive powers of 2 (starting with 2), and \(\mu'_0 \) was obtained from \(\mu_0 \) by retaining all the odd parts but replacing the string of powers of 2 by a single power of 2, one higher then the highest in \(\mu_0 \). In symbols, we conjectured, (and later proved [see below], alas, by purely human means) the following:

Theorem: Let \(\mu_0 \) be any partition of the form

\[\mu_0 = \text{Sort}([a_1, \ldots, a_s, 2, 2^2, \ldots, 2^{t-1}]) \, , \]

where

\[a_1 \geq a_2 \geq \ldots \geq a_s \geq 3 \, , \]

are all odd, and \(t \geq 1 \) (if \(t = 1 \) then \(\mu_0 \) only consists of odd parts). Define

\[\mu'_0 = \text{Sort}([a_1, \ldots, a_s, 2^t]) \, . \]
Then, for every \(n \geq |\mu_0| \), we have

\[
A(\mu_0)(n) = \frac{1}{2} B(\mu'_0)(n + 2) .
\]

(For any sequence of integers, \(S \), \(\text{Sort}(S) \) denotes that sequence sorted in non-increasing order.)

In order to prove our theorem we need to first recall, from [RRZ], the following constant-term expression for \(B(\mu_0)(n) \).

Lemma 1: Let \(\mu_0 = (a_1, \ldots, a_r) \)

\[
B(\mu_0)(n) = \text{Coeff}_{x^{n-1}} \left[\frac{(1 + x)^{2n-2 - 2(a_1 + \cdots + a_r)}}{x^{n-1}} \cdot \prod_{i=1}^{r} (x^{a_i} - (-1)^{a_i})(1 - (-1)^{a_i} x^{a_i}) \right] .
\]

We need an analogous constant-term expression for \(A(\mu_0)(n) \). To that end, let’s first spell-out Equation (\(\text{Chi} \)) for the two-rowed case, \(m = 2 \), so that we can write \(\lambda = (n - j, j) \). We have, writing \(\mu_0 = (a_1, \ldots, a_r) \),

\[
\chi^{(n-j,j)}(\mu_01^{n-|\mu_0|}) = CT_{x_1, x_2} \frac{(1 - \frac{a_2}{x_1})(x_1 + x_2)^{n-a_1-\cdots-a_r} \prod_{i=1}^{r} (x_1^{a_i} + x_2^{a_i})}{x_1^{n-j} x_2^j} . \tag{\(\text{Chi}2 \)}
\]

This can be rewritten as

\[
\chi^{(n-j,j)}(\mu_01^{n-|\mu_0|}) = CT_{x_1, x_2} \frac{(1 - \frac{a_2}{x_1})(1 + \frac{a_2}{x_1})^{n-a_1-\cdots-a_r} \prod_{i=1}^{r} (1 + (\frac{a_2}{x_1})^{a_i})}{(\frac{a_2}{x_1})^j} . \tag{\(\text{Chi}2' \)}
\]

Since the constant-term and is of the form \(P(\frac{a_2}{x_1})/(\frac{a_2}{x_1})^j \) for some single-variable polynomial \(P(x) \), the above can be rewritten, as

\[
\chi^{(n-j,j)}(\mu_01^{n-|\mu_0|}) = \text{Coeff}_{x^0} \left[(1 - x)(1 + x)^{n-a_1-\cdots-a_r} \prod_{i=1}^{r} (1 + x^{a_i}) \right] . \tag{\(\text{Chi}2'' \)}
\]

Note that the left side is utter nonsense if \(j > \frac{n}{2} \), but the right side makes perfect sense. It is easy to see that defining \(\chi^{(n-j,j)}(\mu_01^{n-|\mu_0|}) \) by the right side for \(j > \frac{n}{2} \), we get

\[
\chi^{(n-j,j)}(\mu_01^{n-|\mu_0|}) = -\chi^{(j,n-j)}(\mu_01^{n-|\mu_0|}) .
\]

Let’s denote the numerator of the constant-term of (\(\text{Chi}'' \)), namely

\[
(1 - x)(1 + x)^{n-a_1-\cdots-a_r} \prod_{i=1}^{r} (1 + x^{a_i}) ,
\]

by \(P(x) \), then equation (\(\text{Chi}2'' \)) can be also rewritten as a generating function.

\[
P(x) = \sum_{j=0}^{n} \chi^{(n-j,j)}(\mu_01^{n-|\mu_0|}) x^j .
\]
Since for any polynomial of a single variable, $P(x) = \sum_{j=0}^{n} c_j x^j$, we have
\[
\sum_{j=0}^{n} c_j^2 = \text{Coeff}_{x^0} [P(x) P(x^{-1})],
\]
we get
\[
\sum_{j=0}^{n} \chi^{(n-j,j)}(\mu_0 1^{n-|\mu_0|})^2 =
\]
\[
\text{Coeff}_{x^0} \left[\left((1-x)(1+x)^{n-a_1-\cdots-a_r} \prod_{j=1}^{r} (1+x^{a_j}) \right) \cdot \left((1-x^{-1})(1+x^{-1})^{n-a_1-\cdots-a_r} \prod_{j=1}^{r} (1+x^{-a_j}) \right) \right].
\]
\[
= -\text{Coeff}_{x^0} \left[(1-x)^2(1+x)^{2(n-a_1-\cdots-a_r)} \prod_{j=1}^{r} (1+x^{a_j})^2 \right].
\]
But since, by symmetry,
\[
\sum_{j=0}^{\lfloor n/2 \rfloor} \chi^{(n-j,j)}(\mu_0 1^{n-|\mu_0|})^2 = \frac{1}{2} \sum_{j=0}^{n} \chi^{(n-j,j)}(\mu_0 1^{n-|\mu_0|})^2,
\]
we have

Lemma 2: Let $\mu_0 = (a_1, \ldots, a_r)$ be a partition with smallest part larger than one, then
\[
A(\mu_0)(n) = \frac{1}{2} \text{Coeff}_{x^0} \left[(1-x)^2(1+x)^{2(n-a_1-\cdots-a_r)} \prod_{j=1}^{r} (1+x^{a_j})^2 \right].
\]

We are now ready to prove the theorem. If $\mu_0 = \text{Sort}(a_1, \ldots, a_r, 2, \ldots, 2^{t-1})$ then
\[
A(\mu_0)(n) = \frac{1}{2} \text{Coeff}_{x^0} \left[\frac{(1-x)^2(1+x)^{2(n-a_1-\cdots-a_r-2^2-\cdots-2^{t-1})} \prod_{j=1}^{r-t} (1+x^{2^j})^2 \prod_{j=0}^{t-1} (1+x^{2^j})^2}{x^{n+1}} \right].
\]
But (transferring a factor of $(1+x)^2$ from the second factor to the product, $\prod_{j=1}^{r-t} (1+x^{2^j})^2$), we have
\[
(1+x)^{2(n-a_1-\cdots-a_r-2^2-\cdots-2^{t-1})} \prod_{j=1}^{r-t} (1+x^{2^j})^2 = (1+x)^{2(n-a_1-\cdots-a_r-1-2^2-\cdots-2^{t-1})} \prod_{j=0}^{t-1} (1+x^{2^j})^2.
\]
Hence,
\[
A(\mu_0)(n) = \frac{1}{2} \text{Coeff}_{x^0} \left[\frac{(1-x)^2(1+x)^{2(n-a_1-\cdots-a_r-1-2^2-\cdots-2^{t-1})} \prod_{j=0}^{t-1} (1+x^{2^j})^2 \prod_{j=1}^{r} (1+x^{a_j})^2}{x^{n+1}} \right].
\]
By Euler’s good-old \((1 - x) \prod_{j=0}^{t-1}(1 + x^{2^j}) = 1 - x^{2^t}\). Hence

\[
A(\mu_0)(n) = -\frac{1}{2} \text{Coeff}_{x^0} \left[\frac{(1 - x^{2^t})^2(1 + x)^{2(n-a_1-\ldots-a_r-1-2^2-\ldots-2^{t-1})} \prod_{j=1}^r (1 + x^{a_j})^2}{x^{n+1}} \right].
\]

On the other hand, since \(\mu_0' = \text{Sort}(a_1, \ldots, a_r, 2^t)\), and all the \(a_i\)'s are odd, we have

\[
B(\mu_0')(n + 2) = -\text{Coeff}_{x^0} \left[\frac{(1 + x)^{2n+2-2(a_1+\ldots+a_r+2^t)} x^{n+1}}{(x^{2^t} - 1)^2} \cdot (x^{2^t} - 1) \prod_{j=1}^r (x^{a_j} + 1)^2 \right].
\]

This completes the proof, since \(-(1 + 2 + 2^2 + \ldots + 2^{t-1}) = 1 - 2^t\). \(\square\)

Acknowledgment

The research for this work was done while the second-named author visited the Faculty of Mathematics at the Weizmann Institute of Science, during the week of Oct. 5-9, 2015. He wishes to thank the Weizmann Institute for its hospitality, and its dedicated stuff, most notably Gizel Maimon.

References

Amitai Regev, Department of Pure Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel; amitai dot regev at weizmann dot ac dot il.

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu.