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1 New section added by DZ (INCOMPLETE!)

It should be possible (hopefully) to prove the following theorem.

Theorem 1.1. Let µ be any partition, and let |µ| be the sum of its parts. Then, for n ≥ |µ|,
we have ∑

λ`n

(χλ(µ, 1n−|µ|))2 = C(µ)(n− |µ|)! ,

where
C(µ) :=

∑
λ`|µ|

(χλ(µ))2 ,

Sketch of Proof Recall that fλ, the number of Standard Young Tableaux of shape λ, alias

χλ(1n), satisfies two famous recurrences

fλ =
∑
λ−

fλ− , (GoingDown)

where the sum is over all partitions λ− obtained by removing one cell from λ (legally). This
recurrence is trivial combinatorially, but it should not be too hard to prove it directly, either
from representation theory, or via the fact at the very last line of p. 114 of Macdonald’s
Second Ed., that χλ(ρ) is the coefficient of xλ+δ in aδpρ.
It also follows (combinatorially from Robinson-Schenstead, but it is not too hard to prove it
directly, once again from the above fact), that, if n = |λ|, then

(n+ 1)fλ =
∑
λ+

fλ+ , (GoingUp)

where the sum is over all partitions λ+ obtained by adding one cell to λ (legally).
Let

An :=
∑
λ`n

f 2
λ

1



2

Recall that one way to prove that An = n! (w/o using R-S) is to note that, because of the
Going Down Formula

An =
∑
λ`n

f 2
λ =

∑
λ`n,µ`n−1

fλfµ

where the sum is over all pairs λ, µ such that λ − µ is one legal cell. But this is the same,
thanks to the Going Up formula, to nAn−1. Indeed:

nAn−1 =
∑
µ`n−1

nf 2
µ =

∑
µ`n−1

(nfµ)fµ
∑

λ`n,µ`n−1

fλfµ ,

with the same summation set.
To prove the theorem we note that the Going Down formula seems to hold for all µ ending
in 1

χλ(µ) =
∑
λ−

χλ
−

(µ′) , (GoingDownGeneral)

where µ′ is µ with the last part (that must be a 1, by assumption) removed.
An analog of the Going Up formula seems to hold (see the Maple package SnCharacterTableMiracles)
for any µ, we have

(N1(µ) + 1) χλ(µ) =
∑
λ+

χλ
+

(µ1) , (GoingUpGeneral)

where N1(µ) is the number of ones in µ, and µ1 is the partition obtained from µ by appending
a 1.
The proof of the theorem now follows the same way.
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