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By DZ

Theorem 10.3 Let λ ` n and τ ` n+ 1.

1. Assume first that τ 6= (µ, 1), namely τ = (τ1, . . . , τk) where τk ≥ 2, then∑
ν∈λ+

χν(τ) = 0.

2. Let λ, µ ` n then ∑
ν∈λ+

χν(µ, 1) = (N1(µ) + 1) · χλ(µ),

where N1(µ) is the number of ones in µ.

Remark: A better way to state the theorem is:∑
ν∈λ+

χν(τ) = N1(τ) · χλ(µ) ,

where µ = (τ1, . . . , τk−1, τk − 1) (and remove the last 0 if τk = 1). The proof is by induction on the
number ones in τ , and part 1 is the base case.

Important Definition Let F (x1, . . . , xn) be any Laurent polynomial. Then the constant term
of F , denoted by CTx1,...,xn

F , or simply CTF when there is no ambiguity, is the coefficient of
x0

1 · · ·x0
n in F.

Examples:
CTx1,x2(3 + x1 + x−1

2 ) = 3 ,

CTx1(3 + x1 + x−1
2 ) = 3 + x−1

2 .

Proof of Part 1: One way to define the characters χλ(µ) is via the formula mentioned on the
very last line of p. 114 of Maconad’s “Symmetric Functions and Hall Polynomials” (2nd ed.). Let’s
rephrase it in terms of constant terms.

Important Fact: Let
∆(x1, . . . , xn) =

∏
1≤i<j≤n

(xi − xj) ,

pr(x1, . . . , xn) =
n∑
i=1

xri ,
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Let n be a positive, integer and λ and τ partitions of n. Write τ = (τ1, . . . , τk) and if λ has m < n

parts, define λm+1 = . . . = λn = 0. We have:

χλ(τ) = CTx1,...,xn

∆(x1, . . . , xn)
∏k
i=1 pτi(x1, . . . , xn)∏n

i=1 x
λi+n−i
i

.

Now let’s prove Theorem 10.3, part 1. If |τ | = n, then |λ| = n− 1, of course.

Let’s consider a typical member of λ+. It is obtained by changing one of the parts, λi to λi + 1.
In order for this to be legal, we need λi−1 > λi. Doing this gives almost the same expression, but
with the constant-termand multiplied by x−1

i (the denominator gets multiplied by xi). If it is not
legal, then λi−1 = λi, and the denominator (after multiplying it by xi) has the degrees of xi−1 and
xi being the same. Of course, transposing xi−1 and xi does not change the constant term, but it
makes the consant-termand the negative of the original (since ∆(x1, . . . , xn) is anti-symmetric),
so the constant term equals to its negative and hence is 0 in this (illegal) case.

Hence, we have to prove that, if τk ≥ 2, then

CTx1,...,xn

∆(x1, . . . , xn)
(∏k

i=1 pτi(x1, . . . , xn)
)
·
(∑n

i=1 x
−1
i

)
∏n
i=1 x

λi+n−i
i

= 0 .

But since
∑n
i=1 x

−1
i = en−1(x1, . . . , xn) ·

∏n
i=1 x

−1
i , the left side equals

CTx1,...,xn

∆(x1, . . . , xn)
(∏k

i=1 pτi
(x1, . . . , xn)

)
· en−1(x1, . . . , xn)∏n

i=1 x
λi+n−i+1
i

,

and we have to prove that it equals 0. But since λ is a partition of n− 1, λn = 0, and we claim the
much stronger result

CTxn

∆(x1, . . . , xn)
(∏k

i=1 pτi(x1, . . . , xn)
)
· en−1(x1, . . . , xn)∏n

i=1 x
λi+n−i+1
i

= 0 .

The crucial fact is that the parts of τ are all ≥ 2. Let Junki(x1, . . . , xn−1), (i = 0, 1, 2) denote
various polynomials that only depend on x1, . . . , xn−1. We have

k∏
i=1

pτi(x1, . . . , xn) = Junk0 +O(x2
n) ,

and we also have:

∆(x1, . . . , xn) = Junk1·

(
n−1∏
i=1

(xi − xn)

)
= Junk1·

((
n−1∏
i=1

xi

)
· x0

n − en−2(x1, . . . , xn−1)xn +O(x2
n)

)
.
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Also

en−1(x1, . . . , xn) =

(
n−1∏
i=1

xi

)
· x0

n + en−2(x1, . . . , xn−1) · x1
n .

Now

CTxn
[
∆(x1, . . . , xn)

(∏k
i=1 pτi

(x1, . . . , xn)
)
· en−1(x1, . . . , xn)∏n

i=1 x
λi+n−i+1
i

]

= Junk(x1, . . . , xn−1) · CTxn [(Junk0 +O(x2
n))·(((

n−1∏
i=1

xi

)
· x0

n − en−2(x1, . . . , xn−1)x1
n +O(x2

n)

)
·

((
n−1∏
i=1

xi

)
· x0

n + en−2(x1, . . . , xn−1)x1
n

)
· 1
xn

)
]

and, thanks to (a− b)(a+ b) = a2 − b2, this equals:

Junk(x1, . . . , xn−1) · CTxn
[(Junk0 +O(x2

n))·( n−1∏
i=1

xi

)2

· x0
n − (en−2(x1, . . . , xn−1))2x2

n +O(x2
n)

 · 1
xn

] .

and this is 0. .
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