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Abstract

We study statistical properties of the random variables Xσ(π), the number of occurrences of
the pattern σ in the permutation π. We present two contrasting approaches to this problem:
traditional probability theory and the “less traditional” computational approach. Through
the perspective of the first one, we prove that for any pair of patterns σ and τ , the random
variables Xσ and Xτ are jointly asymptotically normal (when the permutation is chosen from
Sn). From the other perspective, we develop algorithms that can show asymptotic normality
and joint asymptotic normality (up to a point) and derive explicit formulas for quite a few
moments and mixed moments empirically, yet rigorously. The computational approach can
also be extended to the case where permutations are drawn from a set of pattern avoiders to
produce many empirical moments and mixed moments. This data suggests that some random
variables are not asymptotically normal in this setting.

1 Introduction

The primary area of interest in this article is the study of patterns in permutations. We will denote
the set of length n permutations by Sn. Let a1a2 . . . ak be a sequence of k distinct real numbers.
The reduction of this sequence, which is denoted by red(a1 . . . ak), is the length k permutation
π1 . . . πk ∈ Sk such that order-relations are preserved (i.e., πi < πj if and only if ai < aj for every
i and j). Given a (permutation) pattern τ ∈ Sk, we say that a permutation π = π1 . . . πn ∈ Sn
contains the pattern τ if there exists 1 ≤ i1 < i2 < . . . < ik ≤ n such that red(πi1πi2 . . . πik) = τ .
Each such subsequence in π will be called an occurrence of the pattern τ . If π contains no
such subsequence, it is said to avoid the pattern τ . Additionally, we will denote the number of
occurrences of the pattern τ in permutation π by Nτ (π) (e.g., π avoids the pattern τ if and only
if Nτ (π) = 0).

For any pattern τ and integer n ≥ 0, we define the set

Sn(τ) := {π ∈ Sn : π avoids the pattern τ} (1)

and also define sn(τ) := |Sn(τ)|. The patterns σ and τ are said to be Wilf-equivalent if sn(σ) =
sn(τ) for all n ≥ 0. We may also consider the more general set

Sn(τ, r) := {π ∈ Sn : π contains exactly r occurrences of τ}. (2)
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We will analogously define sn(τ, r) := |Sn(τ, r)|.
A classical problem in this area is to find an enumeration for these sets or at the least, to

study properties of the generating function encoding the enumerating sequence (for example, is it
rational/algebraic/holonomic?). However, it is not even known if these generating functions are
always holonomic. In general, the enumeration problem gets very difficult very quickly. Patterns
up to length 3 are well-understood, but there are basic unresolved questions even for length 4
patterns. For example, it is known that there are three Wilf-equivalence classes for length 4
patterns: 1234, 1324, and 1342. While the enumeration problems have been solved for 1234 and
1342, no exact enumeration (or even asymptotics) is known for 1324.

A (probabilistic) variation of this problem was posed by Joshua Cooper [6]: Given two (per-
mutation) patterns σ and τ , what is the expected number of copies of σ in a permutation chosen
uniformly at random from Sn(τ)? We note that if the enumeration of Sn(τ) is known, this question
is equivalent to counting the total number of occurrences of σ in permutations from Sn(τ), or put
more precisely, to compute

Tn(σ, τ) :=
∑

π∈Sn(τ)

Nσ(π). (3)

Bóna first addressed the question for τ = 132 when σ is either the increasing or decreasing
permutation in [2]. He shows how to derive the generating functions for Tn(12 . . . k, 132) and
Tn(k . . . 21, 132), the total number of occurrences of 12 . . . k in Sn(τ) and occurrences of k . . . 21 in
Sn(τ), respectively. In [4], Bóna also shows that Tn(213, 132) = Tn(231, 132) = Tn(312, 132) for
all n and provides an explicit formula for them. Rudolph [13] also proves some conditions on when
two patterns, say p and q, occur equally frequently in Sn(132) (i.e., Tn(p, 132) = Tn(q, 132) for all
n).

In [9], Homberger answers the analogous question when τ = 123 and shows that there are three
non-trivial cases to consider: Tn(132, 123), Tn(231, 123), and Tn(321, 123). He finds generating
functions and explicit formulas for each one.

We will consider a more general problem. Given the pattern τ , suppose that a permutation π is
chosen uniformly at random from Sn(τ). Given another pattern σ, we define the random variable
Xσ(π) := Nσ(π), the number of copies of σ in π. Observe that Tn(σ, τ) = E[Xσ], the expected
value of Xσ (i.e., the first moment of the random variable). The focus of this paper is to study
higher moments for Xσ as well as mixed moments between two such random variables that count
different patterns. We will consider the case where the permutation π is randomly chosen from Sn
as well as some cases where π is chosen from Sn(τ) (for various patterns τ).

In this paper, we approach the problem from two different angles. On one end, we will present
(human-derived) results proving that the random variables are jointly asymptotically normal when
the permutations are chosen at random from Sn. Unfortunately, the techniques do not naturally
extend to the scenario when the permutations are chosen from Sn(τ). On the other end, we present
a computational approach that can quickly and easily compute many empirical moments for the
general case (permutations chosen from Sn(τ)). In addition, for the case where permutations are
chosen from Sn, the computational approach can rigorously produce closed-form formulas for quite
a few moments and mixed moments of the random variables.

This paper is organized as follows. In Section 2, we review and outline the functional equations
enumeration approach developed in [10, 11]. In Section 3, we derive both rigorous results and
empirical values for higher order moments and mixed moments for various random variables Xσ.
In Section 4, we show that the random variables are jointly asymptotically normal when the
permutations are randomly chosen from Sn. In Section 5, we conclude with some final remarks
and observations.
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2 Enumerating with functional equations

For various patterns τ , functional equations were derived for enumerating permutations with r
occurrences of τ in [10, 11, 12]. These functional equations were then used to derive enumeration
algorithms. We briefly review the relevant results here. The curious reader can see [10, 11, 12] for
more details.

2.1 Functional equations for single patterns

Given a (fixed) pattern τ and non-negative integer n, we define the polynomial:

fn(τ ; t) :=
∑
π∈Sn

tNτ (π). (4)

Recall that the coefficient of tr is exactly sn(τ, r). For certain patterns τ , a multi-variate polynomial
Pn(τ ; t; x1, . . . , xn) was defined so that Pn(τ ; t; 1, . . . , 1) = fn(τ ; t) and that functional equations
could be derived for the Pn polynomial.

The pattern τ = 123 was considered in [11, 12], and the polynomial Pn was defined to be:

Pn(123; t; x1, . . . , xn) :=
∑
π∈Sn

(
tN123(π)

n∏
i=1

x
|{(a,b) : πa=i<πb, 1≤a<b≤n}|
i

)
. (5)

It was shown that this Pn satisfies the functional equation:

Theorem 1. For the pattern τ = 123,

Pn(123; t; x1, . . . , xn) =

n∑
i=1

xn−ii · Pn−1(123; t; x1, . . . , xi−1, txi+1, . . . , txn). (FE123)

Since P1(123; t; x1) = 1, the functional equation can be used to recursively compute our desired
quantity Pn(123; t; 1, . . . , 1) = fn(123; t).

Similarly, in [10], the polynomial Pn was defined for the pattern τ = 132 so that it satisfied the
functional equation:

Theorem 2. For the pattern τ = 132,

Pn(132; t; x1, . . . , xn) =

n∑
i=1

x1x2 . . . xi−1 · Pn−1(132; t; x1, . . . , xi−1, txi+1, . . . , txn). (FE132)

Again P1(132; t; x1) = 1, so the functional equation can be used to recursively compute our
desired quantity Pn(132; t; 1, . . . , 1) = fn(132; t).

The same was also done for the pattern τ = 231 in [10]. Although fn(231; t) = fn(132; t),
redeveloping the approach directly for the pattern 231 allows us to consider the patterns 132 and
231 simultaneously. For 231, the polynomial Pn was defined so that it satisfies the functional
equation:

Theorem 3. For the pattern τ = 231,

Pn(231; t; x1, . . . , xn) =
n∑
i=1

x01x
1
2 . . . x

i−1
i · Pn−1(231; t; x1, . . . , xi−1, txixi+1, xi+2, . . . , xn).

(FE231)
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We again have that P1(231; t; x1) = 1, so the functional equation can be used to recursively
compute our desired quantity Pn(231; t; 1, . . . , 1) = fn(231; t).

The approach for the pattern 123 was also extended to the pattern τ = 1234 in [11]. The polyno-
mial Pn(1234; t; x1, . . . , xn; y1, . . . , yn) was defined so that Pn(1234; t; 1 [n times]; 1 [n times]) =
fn(1234; t) and in such a way that it satisfies the functional equation:

Theorem 4. For the pattern τ = 1234,

Pn(1234; t; x1, . . . , xn; y1, . . . , yn) =
n∑
i=1

yn−ii · Pn−1(1234; t; x1, . . . , xi−1, txi+1, . . . , txn; y1, . . . , yi−1, xiyi+1, . . . , xiyn). (FE1234)

Since P1(1234; t; x1; y1) = 1, the functional equation can be used to recursively compute our
desired quantity Pn(1234; t; 1 [n times]; 1 [n times]) = fn(1234; t).

2.2 Merging functional equations for multiple patterns

It is also straight-forward to consider multiple patterns simultaneously if their corresponding func-
tional equations are known, as shown in [10]. For example, suppose that we want to consider the
two patterns σ = 123 and τ = 132 simultaneously. We can extend the fn polynomial in the natural
way to:

fn(σ, τ ; s, t) :=
∑
π∈Sn

sNσ(π)tNτ (π). (6)

In [10], the polynomial Pn(123, 132; s, t; x1, . . . , xn; y1, . . . , yn) was defined so that

Pn(123, 132; s, t; 1 [n times]; 1 [n times]) = fn(123, 132; s, t). (7)

The following functional equation was then derived:

Theorem 5. For the patterns σ = 123 and τ = 132,

Pn(123, 132; s, t; x1, . . . , xn; y1, . . . , yn) =
n∑
i=1

xn−ii · y1y2 . . . yi−1 · Pn−1(123, 132; s, t; x1, . . . , xi−1, sxi+1, . . . , sxn; y1, . . . , yi−1, tyi+1, . . . , tyn).

Observe that we combined the functional equations for the individual patterns 123 and 132 by
re-labeling the xi variables for 132 to yi, merging the reductions in the Pn−1 in the natural way,
and multiplying the coefficient terms for the Pn−1 within the summands. We again have that
P1(123, 132; s, t; x1; y1) = 1, so the functional equation can be used to recursively compute our
desired quantity Pn(123, 132; s, t; 1 [n times]; 1 [n times]) = fn(123, 132; s, t).

More generally, we can similarly extend fn(τ ; t) to k different patterns τ1, τ2, . . . , τk and the
corresponding variables t1, t2, . . . , tk as:

fn(τ1, τ2, . . . , τk; t1, t2, . . . , tk) :=
∑
π∈Sn

t
Nτ1 (π)
1 t

Nτ2 (π)
2 . . . t

Nτk (π)

k . (8)

The generalized polynomials Pn can be similarly defined and analogous functional equations can
be derived.

For example, suppose that we want to consider all length three patterns simultaneously. We
will consider the patterns in lexicographical order (i.e., τ1 = 123, τ2 = 132, . . . , τ6 = 321). Our
fn polynomial now becomes:

fn(123, 132, . . . , 321; t1, t2, . . . , t6) :=
∑
π∈Sn

t
N123(π)
1 t

N132(π)
2 . . . t

N321(π)
6 . (9)
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For notational convenience, the polynomial fn(123, 132, . . . , 321; t1, t2, . . . , t6) will be denoted by
fn(S3; t1, . . . , t6). In [10], we discuss how to extend this to the generalized polynomial Pn and
derive analogous functional equations.

The previous polynomial could also be refined further to consider all length three patterns and
the pattern 1234 simultaneously. We will again consider the length three patterns in lexicographical
order. Our fn polynomial now becomes:

fn(1234,S3; s, t1, t2, . . . , t6) :=
∑
π∈Sn

sN1234(π)t
N123(π)
1 t

N132(π)
2 . . . t

N321(π)
6 . (10)

Just like the previous case, this polynomial can be extended to the analogous generalized polyno-
mial Pn and similar functional equations can be derived.

2.3 Adapting multi-pattern functional equations

The previously described fn polynomials (and their corresponding generalized Pn polynomials and
functional equations) can be easily specialized to consider a variety of scenarios. This allows us to
quickly extract functional equations (and fast enumeration algorithms) in a number of cases.

The polynomial fn(S3; t1, . . . , t6) (in Eq. 9) can be specialized to consider any subset of S3 by
setting some ti variables to 1. For example, fn(S3; t1, t2, 1, 1, 1, 1) would give us the polynomial
tracking 123 and 132 simultaneously. Setting ti = 1 for 3 ≤ i ≤ 6 in the generalized polynomial
Pn and its functional equation would reproduce Theorem 5. This approach actually allows us to
quickly compute the bi-variate polynomial

fn(σ, τ ; s, t) =
∑
π∈Sn

sNσ(π)tNτ (π) (11)

for any patterns σ, τ ∈ S3 (with σ 6= τ).
The polynomial fn(S3; t1, . . . , t6) can actually be specialized in other ways. Suppose that we

wanted to compute the bi-variate polynomial∑
π∈Sn(132)

sN123(π)tN321(π). (12)

Observe that this is exactly fn(S3; s, 0, 1, 1, 1, t). In other words, we may find the coefficient
of t02 in fn(S3; t1, . . . , t6) and then set t3 = t4 = t5 = 1 and t1 = s, t6 = t. The same approach can
be used to compute the polynomial ∑

π∈Sn(132)

sNσ(π)tNτ (π). (13)

for any patterns σ, τ ∈ S3\{132} (with σ 6= τ).
The analogous specialization can be done to quickly compute∑

π∈Sn(123)

sNσ(π)tNτ (π). (14)

for any patterns σ, τ ∈ S3\{123} (with σ 6= τ). In general, for any p ∈ S3, we can quickly compute∑
π∈Sn(p)

sNσ(π)tNτ (π). (15)

for any patterns σ, τ ∈ S3\{p} (with σ 6= τ).

5



We can also adapt the polynomial fn(1234,S3; s, t1, t2, . . . , t6) (from Eq. 10) similarly. In
particular, we can quickly compute the polynomial∑

π∈Sn(1234)

sNσ(π)tNτ (π). (16)

for any patterns σ, τ ∈ S3 (with σ 6= τ) by setting s = 0 (i.e. extracting the coefficient of s0) and
setting the appropriate ti’s to 1 in fn(1234,S3; s, t1, t2, . . . , t6).

The previously discussed functional equation approaches have been implemented in the Maple
packages PDSn, PDAV132, PDAV123, and PDAV1234.

3 Computing moments for random permutations

3.1 Moments for random permutations from Sn
The previously discussed functional equations approach allows us to compute both rigorous and
empirical statistical properties on permutations.

For some fixed n and fixed pattern σ ∈ Sk, suppose that a permutation π ∈ Sn is chosen
uniformly at random. Let the random variable Xσ(π) be the number of occurrences of the pattern
σ in π. It is not hard to compute the expected value (i.e., the first moment of the random variable
X): E[X] =

(
n
k

)
/k!. More generally, it was shown in [16] that each of the higher moments of X is

a polynomial in n. In particular, the r-th moment about the mean of X, which is E[(X −E[X])r],
is a polynomial of degree br(k − 1/2)c for r ≥ 2.1

For the patterns σ that were discussed in the previous section, the functional equations approach
allows us to quickly compute fn(σ; t) for any desired n. Observe that fn(σ; t)/n! gives us the
polynomial where the coefficient of ti is the probability that a randomly chosen π ∈ Sn will
have exactly i copies of σ. The important point is that we can (rigorously) find a closed-form
expression (in n) for the higher order moments of X by computing sufficiently many terms to fit
the polynomial.

For example, it was shown in [16] that the exact expression for the second moment (about the
mean) of the random variable X123 (over Sn) is:

n(n− 1)(n− 2)(39n2 + 102n− 157)

21600
(17)

and that the third moment (about the mean) of the random variable X123 (over Sn) is:

n(n− 1)(n− 2)(1437n4 + 5592n3 − 11277n2 − 33990n+ 34082)

6350400
(18)

Similarly, the exact expression for the second moment (about the mean) of the random variable
X132 (over Sn) is:

n(n− 1)(n− 2)(21n2 + 78n+ 77)

21600
(19)

and that the third moment (about the mean) of the random variable X132 (over Sn) is:

n(n− 1)(n− 2)(129n4 + 3705n3 + 5355n2 + 8655n+ 11356)

12700800
(20)

We may also consider mixed moments for two patterns σ and τ . Suppose that a permutation π
is chosen uniformly at random from Sn, and again let the random variable Xσ(π) be the number

1This corrects a minor inaccuracy in [16].
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of occurrences of pattern σ in π (and equivalently for Xτ (π)). It was also shown in [16] that
the mixed moments of the random variables Xσ and Xτ (about their respective means) are also
polynomials in n. This allows us to rigorously find closed-form expressions (in n) for the higher
order mixed moments by computing enough terms to find the polynomial.

For example, the covariance of the two random variables X123 and X132 is:

n(n− 1)(n− 2)(18n2 − 51n− 109)

21600
(21)

while the covariance of the two random variables X123 and X312 is:

− n(n− 1)(n− 2)(39n2 − 48n− 7)

43200
(22)

and the covariance of the two random variables X123 and X321 is:

− n(n− 1)(n− 2)(9n2 + 12n− 92)

5400
(23)

Similar results for other random variables can be derived using the Maple packages available on
the authors’ website.

3.2 Moments for random permutations from Sn(τ)
There has been a flurry of recent activity studying occurrences of patterns in the set of permutations
avoiding specific patterns. Many of the recent articles focus on counting the total number of
occurrences of a pattern in Sn(132) or in Sn(123). Some examples (as previously mentioned)
include [2, 4, 9, 13]. It is important to note that finding the total number of occurrences of pattern
σ in the set Sn(τ) is equivalent to picking a permutation uniformly at random from Sn(τ) and
finding the expected value E[Xσ] (assuming that the enumeration of Sn(τ) is known).

In the previous section, we were able to rigorously derive closed-form expressions for moments
of the random variable Xσ(π) when the permutation π was randomly chosen from Sn. While
we currently cannot derive similar rigorous results for random permutations from Sn(τ), we can
still compute numerical moments for a variety of cases. Interestingly, a number of such random
variables appear to not be asymptotically normal (as opposed to when π ∈ Sn, where Miklós Bóna
showed that such random variables are asymptotically normal [1], see also Section 4).

3.2.1 Permutations from S132
Suppose a permutation is chosen uniformly at random from Sn(132). Using the Maple packages
that accompany this article, we can compute many empirical moments. The expected values of
the random variables X123, X312, and X321 for 1 ≤ n ≤ 10 can be found in Table 1.

Pattern n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
123 0 0 0.200 0.714 1.619 2.970 4.809 7.171 10.083 13.570
312 0 0 0.200 0.786 1.929 3.790 6.513 10.244 15.115 21.253
321 0 0 0.200 0.929 2.595 5.667 10.653 18.097 28.572 42.672

Table 1: Expected values (first moments) of X123(π), X312(π), and X321(π), where π is chosen
uniformly at random from Sn(132).

The second moments (about the mean) of the random variables X123, X312, and X321 for
1 ≤ n ≤ 10 can be found in Table 2.
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Pattern n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
123 0 0 0.160 1.204 4.617 12.757 28.933 57.463 103.720 174.140
312 0 0 0.160 1.026 3.733 10.213 23.392 47.403 87.787 151.710
321 0 0 0.160 1.352 6.003 19.101 49.313 110.180 221.360 409.960

Table 2: Second moments (about the mean) of X123(π), X312(π), and X321(π), where π is chosen
uniformly at random from Sn(132).

r-th moment n = 15 n = 16 n = 17 n = 18 n = 19 n = 20
r = 3 0.41867 0.42461 0.43073 0.43690 0.44303 0.44906
r = 4 2.92652 2.95682 2.98412 3.00889 3.03152 3.05231
r = 5 3.59958 3.69377 3.78619 3.87633 3.96389 4.04860
r = 6 14.79293 15.24562 15.66679 16.06007 16.42853 16.77483

Table 3: r-th standardized moments for X312(π) for 3 ≤ r ≤ 6, where π is chosen uniformly at
random from Sn(132).

Data for the higher moments can be found on the authors websites. For example, the r-th
standardized moments for X312 when 3 ≤ r ≤ 6 and 15 ≤ n ≤ 20 can be found in Table 3.

It is interesting to note that the random variable X312 does not appear to be asymptotically
normal since the 3-rd and 5-th standard moments appear to be increasing (as opposed to going to
0 as a normal distribution would) and the 6-th moment appears to be larger than 15 (the value
for a normal distribution).

This approach can also be used to consider the mixed (i, j) moments. For example, the mixed
(i, j) moments of the random variables X123 and X321 for 3 ≤ n ≤ 10 can be found in Table 4.

(i, j) n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
(1, 1) −0.040 −0.663 −3.392 −11.162 −28.714 −62.970 −123.370 −222.180
(1, 2) −0.024 −0.350 −1.445 −0.404 21.587 127.800 478.610 1417.300
(2, 1) −0.024 −0.644 −6.657 −38.272 −154.230 −491.000 −1322.000 −3140.400
(2, 2) 0.011 1.288 33.666 382.200 2650.400 13264.000 52628.000 175500.000

Table 4: Mixed (i, j) moments of X123(π) and X321(π), where π is chosen uniformly at random
from Sn(132).

Analogous data and outputs can be found on the authors websites.

3.2.2 Permutations from S123
Suppose a permutation is chosen uniformly at random from Sn(123). Using the Maple packages
that accompany this article, we can compute many empirical moments. The expected values of
the random variables X132, X312, and X321 for 1 ≤ n ≤ 10 can be found in Table 5.

The second moments (about the mean) of the random variables X132, X312, and X321 for
1 ≤ n ≤ 10 can be found in Table 6.

Data for the higher moments can be found on the authors websites. For example, the r-th
standardized moments for X132 when 3 ≤ r ≤ 6 and 15 ≤ n ≤ 20 can be found in Table 7.

It is interesting to note that the random variable X132 does not appear to be asymptotically
normal since the 3-rd and 5-th standard moments appear to be increasing (as opposed to going to
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Pattern n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
132 0 0 0.200 0.643 1.357 2.364 3.678 5.314 7.281 9.589
312 0 0 0.200 0.786 1.929 3.788 6.513 10.244 15.115 21.253
321 0 0 0.200 1.143 3.429 7.697 14.618 24.884 39.208 58.317

Table 5: Expected values (first moments) of X132(π), X312(π), and X321(π), where π is chosen
uniformly at random from Sn(123).

Pattern n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
132 0 0 0.160 0.801 2.468 5.959 12.344 22.978 39.506 63.877
312 0 0 0.160 0.740 2.114 4.804 9.532 17.303 29.501 48.000
321 0 0 0.160 1.122 4.293 12.423 30.287 65.419 128.910 236.250

Table 6: Second moments (about the mean) of X132(π), X312(π), and X321(π), where π is chosen
uniformly at random from Sn(123).

r-th moment n = 15 n = 16 n = 17 n = 18 n = 19 n = 20
r = 3 1.53492 1.54020 1.54458 1.54823 1.55129 1.55385
r = 4 6.28717 6.33967 6.38469 6.42356 6.45735 6.48687
r = 5 23.59568 23.99423 24.34048 24.64315 24.90923 25.14433
r = 6 108.90240 111.90699 114.55548 116.90184 118.99022 120.85698

Table 7: r-th standardized moments for X132(π) for 3 ≤ r ≤ 6, where π is chosen uniformly at
random from Sn(123).

0 as a normal distribution would), the 4-th moment appears to be larger than 3 (the value for a
normal distribution), and the 6-th moment appears to be substantially larger than 15 (the value
for a normal distribution).

This approach can also be used to consider the mixed (i, j) moments. For example, the mixed
(i, j) moments of the random variables X132 and X312 for 3 ≤ n ≤ 10 can be found in Table 8.

(i, j) n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
(1, 1) −0.040 −0.219 −0.641 −1.362 −2.332 −3.326 −3.890 −3.269
(1, 2) −0.024 −0.099 −0.039 0.841 3.917 11.254 25.372 48.890
(2, 1) −0.024 −0.386 −2.261 −8.566 −24.874 −60.099 −126.620 −239.570
(2, 2) 0.011 0.551 6.309 39.592 172.880 592.420 1709.800 4350.100

Table 8: Mixed (i, j) moments of X132(π) and X312(π), where π is chosen uniformly at random
from Sn(123).

Analogous data and outputs can be found on the authors websites.

3.2.3 Permutations from S1234
Suppose a permutation is chosen uniformly at random from Sn(1234). Using the Maple packages
that accompany this article, we can compute many empirical moments. The expected values of
the random variables X123, X132, X312, and X321 for 1 ≤ n ≤ 10 can be found in Table 9.

The second moments (about the mean) of the random variables X123, X312, and X321 for
1 ≤ n ≤ 10 can be found in Table 10.
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Pattern n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
123 0 0 0.167 0.522 1.049 1.739 2.592 3.611 4.796 6.153
132 0 0 0.167 0.696 1.709 3.279 5.457 8.283 11.789 16.004
312 0 0 0.167 0.696 1.796 3.684 6.575 10.679 16.202 23.341
321 0 0 0.167 0.696 1.942 4.335 8.344 14.466 23.223 35.158

Table 9: Expected values (first moments) of X123(π), X132(π), X312(π), and X321(π), where π is
chosen uniformly at random from Sn(1234).

Pattern n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
123 0 0 0.139 0.510 1.172 2.236 3.863 6.257 9.654 14.324
132 0 0 0.139 0.820 2.828 7.332 15.959 30.863 54.767 91.002
312 0 0 0.139 0.820 2.667 6.524 13.484 24.911 42.468 68.157
321 0 0 0.139 0.994 3.764 10.566 24.936 52.338 100.740 181.280

Table 10: Second moments (about the mean) of X123(π), X132(π), X312(π), and X321(π), where
π is chosen uniformly at random from Sn(1234).

Data for the higher moments can be found on the authors websites. For example, the r-th
standardized moments for X123 when 3 ≤ r ≤ 6 and 13 ≤ n ≤ 18 can be found in Table 11.

r-th moment n = 13 n = 14 n = 15 n = 16 n = 17 n = 18
r = 3 1.14140 1.16076 1.17518 1.18585 1.19365 1.19926
r = 4 5.14732 5.21356 5.26297 5.29971 5.32683 5.34656
r = 5 16.61123 17.07925 17.43934 17.71522 17.92523 18.08348
r = 6 74.59126 77.40043 79.60569 81.33022 82.67201 83.70841

Table 11: r-th standardized moments for X123(π) for 3 ≤ r ≤ 6, where π is chosen uniformly at
random from Sn(1234).

It is interesting to note that the random variable X123 does not appear to be asymptotically
normal since the 3-rd and 5-th standard moments appear to be increasing (as opposed to going to
0 as a normal distribution would), the 4-th moment appears to be larger than 3 (the value for a
normal distribution), and the 6-th moment appears to be substantially larger than 15 (the value
for a normal distribution).

This approach can also be used to consider the mixed (i, j) moments. For example, the mixed
(i, j) moments of the random variables X123 and X321 for 3 ≤ n ≤ 10 can be found in Table 12.

(i, j) n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
(1, 1) −0.028 −0.363 −1.298 −3.258 −6.892 −13.121 −23.171 −38.611
(1, 2) −0.019 −0.266 −1.674 −5.958 −15.301 −31.716 −55.546 −82.648
(2, 1) −0.019 −0.166 −0.505 −1.531 −4.798 −13.664 −34.352 −77.387
(2, 2) 0.007 0.386 4.969 33.937 159.600 593.990 1880.700 5274.100

Table 12: Mixed (i, j) moments of X123(π) and X321(π), where π is chosen uniformly at random
from Sn(1234).

Analogous data and outputs can be found on the authors websites.
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4 Joint asymptotic normality of multiple patterns

In this section we let π be a permutation chosen uniformly at random from Sn (without any
condition) and we study the joint distribution of the random variables Xσ,n := Xσ(π), the number
of copies of σ in π, for different patterns σ ∈ S∗ :=

⋃∞
k=1 Sk . We consider asymptotics as n→∞

for (one or several) fixed σ.
Each Xσ,n has an asymptotic normal distribution, as was shown by Bona [1] (see also [3]). We

give another (perhaps simpler) proof of this; moreover, we extend the result to joint asymptotic
normality for several patterns σ.

The asymptotic variances and covariances depend on the patterns in a slightly complicated
way, so we begin with some definitions. For k ≥ 1 and 1 ≤ i ≤ k, define

gk,i(x) :=

(
k − 1

i− 1

)
xi−1(1− x)k−i. (24)

For a permutation σ ∈ Sk, define

Gσ(x, y) :=
1

(k − 1)!2

(
k∑
i=1

gk,i(x)gk,σ(i)(y)− 1

k

)
. (25)

Let Zσ, σ ∈ S∗, be jointly normal random variables with EZσ = 0 and (co)variances

Cov(Zσ, Zτ ) = Σσ,τ := 〈Gσ, Gτ 〉L2([0,1]2) :=

∫ 1

0

∫ 1

0

Gσ(x, y)Gτ (x, y) dxdy. (26)

(Such normal random variables exist since the matrix (Σσ,τ )σ,τ is non-negative definite. As is well
known, the joint distribution is uniquely defined by the means and covariances.)

We denote the length of a permutation σ by |σ|, and let
d−→ denote convergence in distribution

of random variables.

Theorem 4.1. For every pattern σ ∈ S∗, as n→∞,

Xσ,n − EXσ,n

n|σ|−1/2
=
Xσ,n − 1

|σ|!
(
n
|σ|
)

n|σ|−1/2
d−→ Zσ. (27)

Moreover, this holds jointly for any finite family of patterns σ. Furthermore, all (joint) moments
converge; in particular, for any permutations σ, τ

Cov(Xσ,n, Xτ,n)

n|σ|+|τ |−1
→ Σσ,τ . (28)

Before giving the proof we give some comments. First, as noted above, if σ has length |σ| = k,

EXσ,n =

(
n

k

)
1

k!
∼ 1

k!2
nk, as n→∞. (29)

The asymptotic covariances Σσ,τ can be computed explicitly. By a beta integral,∫ 1

0

gk,i(x) dx =

(
k − 1

i− 1

)
Γ(i)Γ(k − i+ 1)

Γ(k + 1)
=

1

k
, (30)

and similarly, for any k, ` ≥ 1 and 1 ≤ i ≤ k, 1 ≤ j ≤ `,∫ 1

0

gk,i(x)g`,j(x) dx =

(
k − 1

i− 1

)(
`− 1

j − 1

)
Γ(i+ j − 1)Γ(k + `− i− j + 1)

Γ(k + `)

=
(k − 1)! (`− 1)!

(k + `− 1)!

(
i+ j − 2

i− 1

)(
k + `− i− j

k − i

)
.

(31)

11



It follows from (30) that, if |σ| = k,∫ 1

0

∫ 1

0

k∑
i=1

gk,i(x)gk,σ(i)(y) dxdy =
k

k2
=

1

k
(32)

which implies, using (31) twice, if further |τ | = `,

∫ 1

0

∫ 1

0

(
k∑
i=1

gk,i(x)gk,σ(i)(y)− 1

k

)∑̀
j=1

g`,j(x)g`,τ(j)(y)− 1

`

 dxdy

=

∫ 1

0

∫ 1

0

k∑
i=1

gk,i(x)gk,σ(i)(y)
∑̀
j=1

g`,j(x)g`,τ(j)(y) dxdy − 1

k`

=

k∑
i=1

∑̀
j=1

∫ 1

0

gk,i(x)g`,j(x) dx

∫ 1

0

gk,σ(i)(y)g`,τ(j)(y) dy − 1

k`

=

k∑
i=1

∑̀
j=1

(k − 1)!2 (`− 1)!2

(k + `− 1)!2

(
i+ j − 2

i− 1

)(
k + `− i− j

k − i

)(
σ(i) + τ(j)− 2

σ(i)− 1

)(
k + `− σ(i)− τ(j)

k − σ(i)

)
− 1

k`
.

Consequently, by (26) and (25), if |σ| = k and |τ | = `, then

Σσ,τ =
1

(k + `− 1)!2

k∑
i=1

∑̀
j=1

(
i+ j − 2

i− 1

)(
k + `− i− j

k − i

)(
σ(i) + τ(j)− 2

σ(i)− 1

)(
k + `− σ(i)− τ(j)

k − σ(i)

)
− 1

(k − 1)! k! (`− 1)! `!
. (33)

Proof of Theorem 4.1. Let U1, . . . , Un be independent and identically distributed (i.i.d.) random
variables with a uniform distribution on [0, 1]. It is a standard trick that (by symmetry) the
reduction red(U1, . . . , Un) is a uniformly random permutation in Sn (note that U1, . . . , Un almost
surely are distinct), so we can take this as our random π and obtain the representation, with
k = |σ|,

Xσ,n = Xσ(π) =
∑

i1<···<ik

1 [red(Ui1 , . . . , Uik) = σ] . (34)

This is an example of an asymmetric U -statistic, and (a rather simple instance of) the general
theory in [14, Section 11.2] can be used to show the theorem. However, the details are a bit
technical, in particular to calculate the asymptotic covariances, so we will instead use another,
more symmetric representation. (See [14, Remark 11.21].)

Let V1, . . . , Vn be another sequence of i.i.d. random variables, uniformly distributed on [0,1]
and independent of U1, . . . , Un. Let π′ be the permutation that sorts these numbers such that
Vπ′(1) < · · · < Vπ′(n) and let π be the reduction of Uπ′(1), . . . , Uπ′(n). Then π is still uniformly
random, and it is easy to see that

Xσ,n = Xσ(π) :=
∑

i1<···<ik

1
[
red(Uπ′(i1), . . . , Uπ′(ik)) = σ

]
=
∑*

j1,...,jk

1 [red(Uj1 , . . . , Ujk) = σ] · 1 [Vj1 < · · · < Vjk ] ,
(35)

12



where
∑*

denotes summation over all distinct indices j1, . . . , jk. This representation, while in
some ways more complicated that (34), has the great advantage that we sum over all ordered
n-tuples of distinct indices; this is thus an example of a U -statistic, and we can apply the basic
central limit theorem by Hoeffding [8, Theorem 7.1], see also [15] and [14, Section 11.1]. In order
to compute the (co)variances, we follow the path of Hoeffding’s proof.

The main idea of Hoeffding’s proof of his central limit theorem is to use a projection. In our
case we let Wj := (Uj , Vj) ∈ [0, 1]2 and write (35) as

Xσ,n =
∑*

j1,...,jk

fσ(Wj1 , . . . ,Wjk), (36)

for a certain (indicator) function fσ. We then take the conditional expectation of fσ(W1, . . . ,Wk)
given one of the variables Wi:

fσ;i(x, y) := E
(
fσ(W1, . . . ,Wk) |Wi = (x, y)

)
; (37)

we also take the expectation

µ := E fσ(W1, . . . ,Wk) = E fσ;i(Wi). (38)

Hoeffding then shows that if we replace fσ by f ′σ(W1, . . . ,Wk) := µ+
∑k
i=1(fσ,i(Wi)−µ), then

the resulting error for the sum in (36) will have variance O(n2k−2), which is negligible with the
normalization used in Theorem 4.1. Thus we can approximate Xσ,n − EXσ,n by

∑*

j1,...,jn

k∑
i=1

(
fσ;i(Wji)− µ

)
=

k∑
i=1

(n− 1)k−1
n∑
j=1

(
fσ;i(Wj)− µ

)
= (n− 1)k−1

n∑
j=1

Fσ(Wj), (39)

where (n− 1)k−1 = (n− 1) · · · (n− k + 1) and

Fσ(x, y) :=

k∑
i=1

(
fσ;i(x, y)− µ

)
. (40)

The asymptotic normality of Xσ,n now follows by the standard central limit theorem for the

i.i.d. random variables Fσ(Wj), which yields (Xσ,n − EXσ,n)/nk−1/2
d−→ N

(
0,Σσ,σ

)
where

Σσ,σ := E
(
Fσ(W1)2

)
=

∫ 1

0

∫ 1

0

Fσ(x, y)2 dxdy. (41)

Joint normality for several patterns σ (possibly of different lengths) follows in the same way,
with the asymptotic covariances

Σσ,τ := E
(
Fσ(W1)Fτ (W1)

)
=

∫ 1

0

∫ 1

0

Fσ(x, y)Fτ (x, y) dxdy. (42)

It remains to compute the functions Fσ defined in (40) In order to do this, we see that from
(37) and the definition of fσ as an indicator function, cf. (35)–(36),

fσ;i(x, y) = P
(
red(U1, . . . , Uk) = σ | Ui = x

)
P
(
V1 < · · · < Vk | Vi = y

)
. (43)

For the second probability in (43) we require that V1, . . . , Vi−1 < y and Vi+1, . . . , Vk > y, and
furthermore that these two sets of variables are increasing; since the variables are independent and
uniformly distributed, the probability is, recalling the notation (24),

yi−1

(i− 1)!

(1− y)k−i

(k − i)!
=

1

(k − 1)!
gk,i(y). (44)
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Similarly, for the first probability in (43) we require that the σ(i):th smallest of U1, . . . , Uk
is x, and that the others come in the order specified by σ, and the probability of this is (k −
1)!−1gk,σ(i)(x). Consequently,

fσ;i(x, y) =
1

(k − 1)!2
gk,σ(i)(x)gk,i(y). (45)

Furthermore,

µ := E fσ(W1, . . . ,Wk) = P
(
red(U1, . . . , Uk) = σ

)
P
(
V1 < · · · < Vk

)
=

1

k!2
. (46)

It follows from (40), (45), (46) and (25) that Fσ(x, y) = Gσ(y, x). Hence (41)–(42) agree with
(26), and Hoeffding’s theorem yields (27).

Hoeffding’s theorem (and its proof sketched above) yields also the convergence (28) of the
covariances. To see that moment convergence holds also for higher moments, let m be a positive
integer. By (36),

E
(
Xσ,n − EXσ,n

)m
=

∑*

j11,...,jk1

· · ·
∑*

j1m,...,jkm

E
m∏
i=1

(
fσ(Wj1i , . . . ,Wjki)− µ

)
(47)

where the expectation on the right-hand side vanishes unless each index set {j1i, . . . , jmi}
contains at least one index shared by another such set. In this case, however, there are at most
mk−m/2 distinct indices, and it follows that the moment (47) is a polynomial in n of degree at most
mk−m/2. In particular, the normalized central moment E

(
(Xσ,n −EXσ,n)/nk−1/2

)m
= O(1). If

m is an even integer, this implies, by standard results on uniform integrability, that all moments
of lower order converge to the corresponding moments of the limit Zσ, and the same holds for joint
moments. Since m is arbitrary, this shows convergence of all moments.

Example 4.2. The case k = 1 is trivial, with X1,n = n deterministic. Indeed, (24)–(25) yield
g1,1(x) = 1 and G1,1(x, y) = 0.

Example 4.3. The simplest non-trivial example is k = 2, where X21(π) is the number of inversions
in π. The distribution of this random variable, for π uniformly at random in Sn, is called the
Mahonian distribution, and it is well-known that it is asymptotically normal, see e.g. [7, Section
X.6]. (See [5] for the case of permutations of multi-sets; it would be interesting to obtain similar
results for other patterns in multi-set permutations.) A simple calculation using (24)–(25) yields

G21,21(x, y) = −2
(
x− 1

2

)(
y − 1

2

)
(48)

and (26) or (33) yields Σ21,21 = 1/36. Hence Theorem 4.1 in this case yields the well-known

X21,n − 1
2

(
n
2

)
n3/2

d−→ N
(
0, 1/36

)
. (49)

Example 4.2 is the only case when the limit Zσ in Theorem 4.1 vanishes, as we show next.

Theorem 4.4. If k > 1, then Σσ,σ > 0 and thus Zσ is non-degenerate, for every σ ∈ Sk.

Proof. By (24),
k∑
i=1

gk,i(x) = 1. (50)
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Hence (25) may be written, using Kronecker’s delta δi,j ,

Gσ(x, y) :=
1

(k − 1)!2

k∑
i=1

k∑
j=1

(
δj,σ(i) −

1

k

)
gk,i(x)gk,j(y). (51)

For a fixed k, the polynomials gk,i, 1 ≤ i ≤ k, are linearly independent (and form basis in
the k-dimensional vector space of polynomials of degree ≤ k − 1). Hence the k2 tensor products
gk,i(x)gk,j(y) are linearly independent in L2([0, 1]2), and it follows from (51) and (26) that if k ≥ 2,
then Gσ is not identically 0 and thus Σσ,σ =

∫∫
Gσ(x, y)2 > 0.

For a given k we have k! patterns σ ∈ Sk and thus k! limit variables Zσ. We have just seen
that (if k > 1) these are all non-degenerate; however, they are not linearly independent. For
example, the sum

∑
σ∈Sk Xσ(π) =

(
n
k

)
for every π, so the sum is deterministic and it follows

that
∑
σ∈Sk Zσ = 0. Many non-trivial linear combinations vanish too, as is seen by the following

theorem.

Theorem 4.5. Let k ≥ 1. The k! limit random variables Zσ, σ ∈ Sk, span a linear space of
dimension (k − 1)2.

Proof. By the definition (26), this linear space, V say, is isomorphic (and isometric for the appro-
priate L2-norms) to the linear space V1 spanned by the functions Gσ on [0, 1]2. Furthermore, by
(51) and the comments after it, V1 is isomorphic to the linear space V2 of k × k matrices spanned

by the matrices Aσ :=
(
δj,σ(i)− 1

k

)k
ij=1

. Let V3 be the space of all k×k matrices with all row sums

and column sums 0. Then each matrix Aσ ∈ V3 and thus V2 ⊆ V3. Conversely, it is easily seen
that each matrix in V3 is a linear combination of matrices Aσ, for example using the well-known
fact that every doubly stochastic matrix is a convex combination of permutation matrices. Hence
V2 = V3. Finally, dim(V3) = (k − 1)2 since a matrix in V3 is uniquely determined by its upper left
corner (k − 1)× (k − 1) submatrix obtained by deleting the last row and column, and conversely
this submatrix may be chosen arbitrarily.

Example 4.6. There are 6 patterns of length k = 3. Taking them in lexicographic order 123, 132,
213, 231, 312, 321, and using Maple to calculate the covariance matrix of the limit variables Zσ
by (24)–(26), we find

(
Cov(Zσ, Zτ )

)
σ,τ∈S3

=
(
Σσ,τ

)
σ,τ∈S3

=
1

5!2


26 12 12 −13 −13 −24
12 14 −1 −6 −6 −13
12 −1 14 −6 −6 −13
−13 −6 −6 14 −1 12
−13 −6 −6 −1 14 12
−24 −13 −13 12 12 26

 . (52)

We note that the asymptotic variances differ between different patterns; they are 13/7200 (for
123 and 321) or 7/7200 (for the other patterns).

The eigenvalues of the covariance matrix (52) are

3

5!2
(
25, 5, 5, 1, 0, 0

)
, (53)

verifying that this matrix has rank 4 as given by Theorem 4.5. A choice of pairwise orthogonal
eigenvectors (in the corresponding order) is
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
2
1
1
−1
−1
−2

 ,


0
1
−1

0
0
0

 ,


0
0
0
1
−1

0

 ,


2
−1
−1
−1
−1

2

 ,


1
−1
−1

1
1
−1

 ,


1
1
1
1
1
1

 . (54)

Remark 4.7. The last eigenvector in (54) corresponds to the trivial fact mentioned above that
the sum of all Zσ vanishes. The fifth eigenvector, also with eigenvalue 0, says that

Z123 + Z231 + Z312 − Z132 − Z213 − Z321 = 0. (55)

Let Y (π) be the corresponding number

Y (π) := X123(π) +X231(π) +X312(π)−X132(π)−X213(π)−X321(π), (56)

and let Yn := Y (π) with π chosen uniformly at random in Sn. (Note that Y (π) is the sum of the
signs of the

(
n
3

)
permutations red

(
πi1πi2πi3

)
.) Theorem 4.1 and (55) thus say that, as n → ∞,

n−5/2Yn
d−→ 0. However, in this case, the random variable Yn does not vanish identically. (Take

π as the identity permutation.) Using the same methods as in Section 3.1, we can show that

Var(Yn) =
n2(n− 1)(n− 2)

18
. (57)

In particular, we have that the leading term of Var(Yn) is 1
18n

4, i.e. of order n2k−2 instead of
n2k−1 as in the cases when Theorem 4.1 yields a non-degenerate limit. In such cases, one can use a
more advanced version of Hoeffding’s argument above and show that there is an asymptotic distri-
bution that can be represented as an (infinite) polynomial of degree 2 in normal random variables;
this polynomial can further be diagonalized as a linear combination of squares of independent
normal variables, see e.g. [15] and [14, Section 11.1]. In the present case this leads to

n−2Yn
d−→ Y ∗ =

∞∑
`,m=−∞
`,m 6=0

1

2π2`m

(
ξ2`,m − 1

)
, (58)

where ξ`,m are i.i.d. standard normal random variables. (We omit the details but note that the
bilinear form in [14, Corollary 11.5(iii)] in this case after some calculation turns out to correspond
to the convolution operator on L2(T2) given by convolution with H(x, y) = 1

6 (2x − 1)(2y − 1)
(where we identify the group T with [0, 1)); hence its eigenvalues are the Fourier coefficients

Ĥ(`,m) = −1/(6π2`m), which yields the coefficients in (58).) Note that, since Var(ξ2`,m) = 2,

VarY ∗ =

∞∑
`,m=−∞
`,m6=0

2

4π4`2m2
=

1

18
, (59)

in accordance with the asymptotic formula Var(Yn) ∼ n4/18. Furthermore, the representation
(58) of the limit Y yields its moment generating function as

E etY
∗

=

∞∏
`,m=−∞
`,m 6=0

(
1− 2t

2π2`m

)−1/2
=

∞∏
`,m=1

(
1− t2

π4`2m2

)−1
=

∞∏
m=1

t/mπ

sin(t/mπ)
, |<t| < π2.

(60)
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This type of limit is typical of the degenerate cases that can occur for certain linear combinations
of pattern counts. It is also possible to obtain higher degeneracies in special cases, with variance
of still lower order and a limit that is a polynomial of higher degree in infinitely many normal
variables; one example is to generalize (56) by taking, for any fixed k ≥ 3, the sum of the signs
of the

(
n
k

)
patterns of length k occurring in π. It can be seen that for this example, Var(Yn) is a

polynomial in n of degree k+ 1 only (instead of the typical 2k− 1), because all higher order terms
cancel in this highly symmetric example.

Example 4.8. There are 24 patterns of length k = 4. A calculation as in Example 4.6 of the
covariance matrix yields a 24× 24 matrix of rank (4− 1)2 = 9. The 9 non-zero eigenvalues are

8

7!2
(
441, 147, 147, 49, 21, 21, 7, 7, 1

)
. (61)

Similarly, for k = 5 the covariance matrix is a 120 × 120 matrix with the 42 = 16 non-zero
eigenvalues

30

9!2
(
7056, 3024, 3024, 1296, 756, 756, 324, 324, 84, 84, 81, 36, 36, 9, 9, 1

)
. (62)

The fact that the eigenvalues in (53), (61) and (62) all are simple rational numbers suggests
that there is a general structure (valid for all k) for these eigenvalues, and presumably also for the
corresponding eigenvectors; it would be interesting to know more about this.

5 Conclusion

In this article, we studied the moments and mixed moments of the random variables Xσ(π) for a
number of patterns σ, where π may be chosen from Sn or a pattern avoiding set Sn(τ). In addition,
we prove that for any two patterns, the corresponding random variables are joint asymptotically
normal when the permutations are drawn from Sn. The contrasting computational approach can
compute a number of moments and mixed moments as well as derive (rigorous) formulas for the
lower moments. We anticipate that this approach could be extended to provide an alternative
proof to the joint asymptotic normality of multiple random variables, but we leave this as “future
work”.

In the setting where the permutations are chosen from the pattern avoiding set Sn(τ) (for some
fixed pattern τ), much less is known. Others have recently studied the total number of occurrences
of a pattern in these sets, which is equivalent to the expected value (i.e., the first moment) of
the random variable Xσ, generally for when both σ, τ ∈ S3. Our approach allows us to quickly
compute many empirical moments, far beyond the first moment. We expect that a more thorough
analysis of these higher moments will uncover interesting properties and that in some cases, these
higher moments will also have closed form formulas. In addition, the random variables for some
patterns appear to not be asymptotically normal (whereas in the case where permutations are
drawn from Sn, they are asymptotically normal for every pattern [1]). It would be interesting to
understand which patterns (if any) have corresponding random variables that are asymptotically
normal when permutations are drawn from Sn(τ).
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[4] Miklós Bóna, Surprising symmetries in objects counted by Catalan numbers. Electron. J.
Combin. 19 (2012), no. 1.

[5] E. Rodney Canfield, Svante Janson and Doron Zeilberger, The Mahonian probability distri-
bution on words is asymptotically normal. Adv. Appl. Math. 46 (2011), no. 1–4, 109–124.
Corrigendum: ibid 49 (2012), no. 1, 77.

[6] Joshua Cooper, Combinatorial Problems I like. internet resource,
http://www.math.sc.edu/%7Ecooper/combprob.html.

[7] William Feller, An Introduction to Probability Theory and Its Application, volume I, third
edition, Wiley, New York, 1968.

[8] Wassily Hoeffding, A class of statistics with asymptotically normal distribution. Ann. Math.
Statistics 19, (1948). 293–325.

[9] Cheyne Homberger, Expected patterns in permutation classes. Electron. J. Combin. 19,
(2012), no. 3.

[10] Brian Nakamura, Approaches for enumerating permutations with a prescribed number of
occurrences of patterns. Pure Math. Appl. (PU.M.A.), to appear.

[11] Brian Nakamura and Doron Zeilberger, Using Noonan-Zeilberger functional equations to enu-
merate (in polynomial time!) generalized Wilf classes. Adv. in Appl. Math. 50, (2013), no. 3,
356–366.

[12] John Noonan and Doron Zeilberger, The enumeration of permutations with a prescribed
number of “forbidden” patterns. Adv. in Appl. Math. 17, (1996), no. 4, 381–407.

[13] Kate Rudolph, Pattern popularity in 132-avoiding permutations. Electron. J. Combin. 20,
(2013), no. 1.

[14] Svante Janson, Gaussian Hilbert Spaces. Cambridge Univ. Press, Cambridge, UK, 1997.

[15] H. Rubin and R. A. Vitale, Asymptotic distribution of symmetric statistics. Ann. Statist. 8
(1980), no. 1, 165–170.

[16] Doron Zeilberger, Symbolic moment calculus. I. Foundations and permutation pattern statis-
tics. Ann. Comb. 8 (2004), no. 3, 369–378.

18


	Introduction
	Enumerating with functional equations
	Functional equations for single patterns
	Merging functional equations for multiple patterns
	Adapting multi-pattern functional equations

	Computing moments for random permutations
	Moments for random permutations from Sn
	Moments for random permutations from Sn()
	Permutations from S132
	Permutations from S123
	Permutations from S1234


	Joint asymptotic normality of multiple patterns
	Conclusion

