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Introduction

In a recent beautiful article, Nathaniel Shar and Doron Zeilberger ([ShZ]) proved that for any
positive integer r, the generating function of the sequence enumerating 123-avoiding words with
r occurrences of each of the letters 1, . . . , n is always algebraic. In other words for each r, the
generating function, let’s call it fr(x), satisfies an equation of the form

Pr(x, fr(x)) = 0 ,

for some polynomial, Pr, of two variables. The actual polynomials, Pr(x, y), were computed for
r ≤ 4.

This is no longer true for 12 . . . d-avoiding words with d ≥ 4, even for r = 1.

In 1990 Doron Zeilberger ([Z]) showed that for and any positive integer d, the generating function
enumerating 1 . . . d-avoiding permutations (i.e. words in {1, . . . , n} where each letter occurs exactly
1 times) is the next-best-thing to being algebraic, which is being D-finite (aka as holonomic). Recall
that a formal power series is D-finite if it satisfies a linear differential equation with polynomial
coefficients, or equivalently, the enumerating sequence itself is P-recursive, i.e. satisfies a linear
recurrence equation with polynomial coefficients. Ira Gessel ([G]) famously discovered (and proved)
a beautiful determinant with Bessel functions, for the generating function, (of the sequence divided
by n!2) (that also implies the above result), and Amitai Regev ([R]) famously derived delicate and
precise asymptotics.

In the present article, dedicated to guru Neil Sloane on his 75-th birthday, we observe that the
analogous generating functions for multi-set permutations (alias words), where every letter appears
the same number of times, say r, are still always D-finite, (for every d and every r), and we actually
crank out the first few terms of quite a few of them, many of whom are not yet in the OEIS ([Sl]).

All this data, often with linear recurrences (that we know a priori exist, and hence it justifies their
discovery by pure guessing), and very precise asymptotics, is collected in the front of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/sloane75.html
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where links to two useful Maple packages, that were used to generate all that data, SLOANE75 and
NEIL, can be found and downloaded, and readers who have Maple and computer time to spare are
welcome to use in order to generate yet more data.

Last but not least, we pledge 100 dollars to the OEIS in honor of the first one to prove our con-
jectured asymptotic formula for the number of 1 . . . d-avoiding words in {1r . . . nr} that generalizes
Regev’s ([R]) famous formula for r = 1. We pledge another 100 dollars for extending Gessel’s Bessel
determinant, from the r = 1 case to general r.

Why is the Sequence Enumerating 1 . . .d-avoiding words in {1r . . .nr} P-recursive?

By the Robinson-Schenstead-Knuth (RSK) famous correspondence, our quantity of interest, let’s
call it Ad,r(n) is given by

Ad,r(n) =
∑
λ`rn

length(λ)≤d

fλg
(r)
λ ,

where fλ is the number of standard Young tableaux of shape λ = (λ1, . . . , λd), and g(r)
λ is the number

of column-strict Young tableaux with exactly r occurrences of each of 1, . . . , n. For λ = (λ1, . . . , λd)
(where we pad it with zeroes if the length is less than d), fλ is closed-form (thanks to Young-
Frobenius, or the hook-length formula), and hence ipso facto, holonomic in its d discrete arguments.
Furthermore, for r > 1, g(r)

λ , while no longer closed-form, is easily seen to be holonomic in its d
discrete arguments (one way to see this is to note that their redundant generating function (in the
sense of MacMahon) is a rational formal power series in x1, . . . , xd). It follows, by general holonomic
nonsense ([Z]), that for any fixed integers r and d the sequence, in n, {Ad,r(n)}, is P -recursive.
Computationally speaking, it is fairly easy to compute g(r)

λ , and hence crank-out the first few terms
of the sequences {Ad,r(n)} for quite a few d and r, that for r and d not too large may be used to
guess (in real time) the recurrences empirically, that we know must be the right ones.

The 100 dollars conjecture generalizing Regev’s Asymptotics

Conjecture (100 donation to the OEIS in honor of the first prover)

Let Ad,r(n) be the number of 1 . . . d-avoiding words in {1r . . . nr}, then there exists a constant Cr,d
such that

Ad,r(n) ∼ Cr,d ·
((

d+ r − 2
d− 2

)
(d− 1)r

)n
· 1
n((d−1)2−1)/2

.

Extra Credit (25 additional dollars): find an explicit expression for Cr,d in terms of r and d

(involving π, of course).

The 100 dollars Challenge to generalize Gessel’s Spectacular Theorem

This is more open-ended, but it would be nice to get a determinant expression, in the style of Ira
Gessel’s ([G]) famous expression for the generating function of Ad,1(n)/n!2, canonized in the bible
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([W], p. 996, Eq. (5)). Here it is: Let uk(n) := Ak,1(n), then

∑
n≥0

uk(n)
n!2

x2n = det(I|i−j|(2x))i,j=1,...,k ,

in which Iν(t) is (the modified Bessel function)

Iν(t) =
∞∑
j=0

( 1
2 t)

2j+ν

j!(j + ν)!
.

Guru Herb Wilf (ibid) goes on to wax eloquently:

“ At any rate, it seems fairly “spectacular” to me that when you place various infinite series
such as the above into a k× k determinant, and then expand the determinant, you should find that
the coefficient of x2n, when multiplied by n!2, is exactly the number of permutations of n letters
with no increasing subsequence longer than k .”

It would be even more spectacular, if you, dear reader, would generalize this to r > 1!
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