Automatic Generation of Generating Functions for Enumerating Matchings

By Shalosh B. EKHAD and Doron ZEILBERGER

Very Important: This article comments on the Maple package http://www.math.rutgers.edu/~zeilberg/tokhniot/KamaShidukhim. Lots of sample input and output can be gotten from the “front” of this article: http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/shidukhim.html.

Per Hakan Lundow (http://www.theophys.kth.se/~phl/Text/1factors2.ps.gz), and Frans Faase (http://www.iwriteiam.nl/Cpaper.zip) devised efficient algorithms for computing generating functions for the number of matchings (both perfect, and not-necessarily perfect) in grid graphs, namely the Cartesian product $P_m \times P_n$ where P_n is the path of length n, and more generally, $P_n \times G$, for any graph G. In this article we first reproduce, in Maple, what they did, and further generalize their work to more general infinite families of graphs.

For a graph G, let $S_1(G)$ and $S_2(G)$ be, respectively, the number of perfect matchings (sets of pairwise vertex-disjoint edges that cover all the vertices) and (all) matchings (sets of pairwise vertex-disjoint edges). It is well-known and fairly easy to see (and is implied by the algorithm outlined below, that is implemented in KamaShidukhim) that for any fixed positive integer m, the generating functions

$$\sum_{n=0}^{\infty} S_1(P_m \times P_n)z^n, \quad \sum_{n=0}^{\infty} S_2(P_m \times P_n)z^n$$

are both rational functions of z. The Maple package KamaShidukhim automatically computes these rational function for any inputted numeric m. See procedure GFrect(m,z) and GFrectMD(m,z) of KamaShidukhim.

In fact we do something much more general. For any graph G, KamaShidukhim can (explicitly!) compute the rational generating functions

$$\sum_{n=0}^{\infty} S_1(P_n \times G)z^n, \quad \sum_{n=0}^{\infty} S_2(P_n \times G)z^n.$$

See procedures GFG(G,m,z) and GFGmd(G,m,z) of KamaShidukhim.

In fact we do something enormously more general! For any graph G, on m vertices, and for any bipartite (m,m) graph C, let $M_n(G,C)$ be the graph on mn vertices where the edges among $1+im, 2+im, \ldots, m+im$, ...,
for $i = 0, \ldots, n-1$, mimic the graph G, and in addition the edges between
\[1 + im, 2 + im, \ldots, m + im \]
and
\[1 + (i+1)m, 2 + (i+1)m, \ldots, m + (i+1)m \]
(0 ≤ $i < n-1$) mimic the edges of C, given as a set of (up to m^2) ordered pairs $\{[\alpha, \beta]\}$. $[\alpha, \beta] \in C$ means that there is an edge between vertex $\alpha + im$ and vertex $\beta + (i+1)m$ for $0 \leq i < n-1$. Note that when C is the monogamy bipartite graph $\{[1, 1], \ldots, [m, m]\}$, where Mr i is connected to Mrs i (but no cheating!), then $M_n(G, C)$ reduces to the Cartesian product $G \times P_n$.

KamaShidukhim can (explicitly!) compute the rational functions (of z):
\[
\sum_{n=0}^{\infty} S_1(M_n(G, C))z^n, \quad \sum_{n=0}^{\infty} S_2(M_n(G, C))z^n.
\]
See procedures GFt(G,C,z) and GFtMD(G,C,z) of KamaShidukhim.

The Method

Of course we use the transfer matrix method. When we do match-making, we must first decide whom amongst those vertices of $M_n(G, C)$ that live on the “bottom floor” (“oldest”) copy of G would be connected to each other and how to decide on these intra-generational pairings within that oldest level. Having done that, we have to decide how to match the remaining, not-yet-matched vertices (still at the oldest copy of G) to some vertices on the next floor, via the edges of the copy of C. After these inter-generational matchings have been decided, some vertices of the second copy of G (on the second level of $M_n(G, C)$) are already committed to a relationship to someone older, but the remaining vertices can be either matched to someone in their own generation, or to someone in the next-generation-copy of G, etc. So it naturally emerges that we have to tackle the more general problem of enumerating “chopped matchings” where the bottom copy of G has a prescribed subset of vertices that are already matched.

As the computer does it, it dynamically builds the set of states, a certain collection of subsets of $\{1, \ldots, m\}$, and there is no need for human “ingenuity” to “figure-out” the set of states.

The computer also, all by itself, figures out the transition matrix. Then it automatically sets-up the system of linear equations (involving the variable z), and automatically goes on to solve them, symbolically!, and at the end gets the desired quantity, the generating function of the state $\{1, \ldots, m\}$. Please see the Maple source-code of procedures GFt(G,C,z) and GFtMD(G,C,z) of KamaShidukhim for more details.

Shalosh B. Ekhad and Doron Zeilberger, Department of Mathematics, Hill Center-Busch Campus, Rutgers University, 110 Frelinghuysen Rd, Piscataway, NJ 08544, USA.

Email: [c/o zeilberg, zeilberg]@math.rutgers.edu.