Sharp Upper Bounds for the Orders of The Recurrences Outputted by the
Zeilberger and g-Zeilberger Algorithms

Mohamud MOHAMMED ' and Doron ZEILBERGER*

“BEr muf sozusagen die Leiter wegwerfen, nachdem er auf ihr hinaufgestiegen ist”
——L. Wittgenstein (Logisch-philosophische Abhandlung, 6.54)

Abstract: We do what the title promises, and as a bonus, we get much simplified versions of these
algorithms, that do not make any explicit mention of Gosper’s algorithm.

Notation. For k integer, (2)5 := z(z+1) ... (z+k —1),[a]y := (1 —¢%)(1 —g**1) ... (1 — ¢*tF1),
if k> 0 and (), := 1/(z + k)—g, [a]x := 1/[a + k]—g, if & < 0. For a Laurent polynomial p(t)
of t, deg(p) is the degree, and Ideg(p) is the low-degree, e.g., if p = 4¢3 + 2t=! + 4 + 3t + 2,
deg(p) = 2,ldeg(p) = —3.

Theorem. Let
F(n,k) = POL(n,k) - H(n,k) (Proper Hypergeometric)
where POL(n, k) is a polynomial in (n, k) and

A B
Hj:l (ag',)a;-n-l-ajk Hj:l (b;',)b;-n—b]—k S

C D
Hj:l (c;")c;.n-i-c]-k Hj:l (d;',)d;.n—djk

0, ¢4, ¢5,dj, d; are non-negative integers, and z, aj,b},c},d] are commuting
indeterminates. We also assume that the factorization in (Proper Hypergeometric) is mazimal, i.e.

POL(n, k) is of the largest possible degree. Let

A D B c
L = max Zaj + Zdj , ij + ch . (ZBound)
J=1 Jj=1 Jj=1 j=1

H(n,k) =

, (PureHypergeometric)

where the aj,aj,b;

There exist polynomials in n, eg(n),...,er(n), not all zero, and a rational function R(n,k) such
that G(n, k) := R(n, k)F(n, k) satisfies
L

ei(n)F(n+1i,k) =G(n,k+1) — G(n,k) . (Zpair)
i=0
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Furthermore, in general, L cannot be made any smaller.

Proof: Let

H(n, k) = CH?=1(G9,)a;n+ajk H§:1(b§-')b;n—bjk o
=1 ()es (nny s I1j—1 (@ )ag () -
A
f(k) =z ][ (ajn + ajk + af)a H (dj(n+ L) —djk + d} —dj)a,
i=1 e
and

Q

B
g(k) = H(bn—bk+b" bJH (n+ L)+ cjk + ).,

j=1 j=1

Note that H(n,k+ 1)/H(n,k) = f(k)/g(k). Write
G(n,k) =gk — 1)X(k)H(n,k) . (Ansatz)

Substituting into (Zpair) and dividing both sides by H (n, k), shows that it is equivalent to

f(R)X(k+1)—g(k—1)X(k) —h(k)=0 (Gosper)
where .
H kK
Zez JPOL(n +14,k) - M
= H(n, k)
Note that h(k) is a polynomial since
H(n+i,k)
H(n, k)
A B c D
H ajn+tajk+al), H (B —bik+b])ap, H cjneikHe+ic) (—iye, H(d;-n—djk+d;-’+id;-)(L_i)d;_
j=1 j=1 j=1 7j=1

We claim that (Gosper) can always be solved (non-trivially) with X (k) being a polynomial of
degree M := deg(h) — max(deg(f),deg(g)). Writing

X(k) = Z z;(n)k" (Ansatz1)

substituting into (Gosper), and setting all the coefficients to 0, yields deg(h) + 1 homogeneous
linear equations for the M + L + 2 unknowns ey(n),...,er(n), and zo(n),...,zp(n). For such a
not-all-zero solution to exist, we need # unknowns — # equations —1 > 0, i.e. (M + L+ 2) —
(deg(h) +1) —1 >0, i.e. L > maz(deg(f),deg(g)). But

A D
deg(f):Zaj+Zdj , deg(g Zb —}—ZCJ
j=1 j=1



This concludes the proof ezcept that we did not rule out the possibility of eg(n),...,er(n) being

all zero (all we are guaranteed, so far, is that it is not possible for all of ey(n),...,er(n), and
zo(n), ...,z (n) to be zero). But if all the e;(n)’s are zeros, then h(k) is zero and (Gosper)
becomes

X(k+1) B gk —1)
X (k) (k)
Since X (k) is a polynomial, it means that the roots of f(k) = 0 differ from the roots of g(k—1) =0
by fized non-negative integers, which is not possible because of the maximality hypothesis about

POL(n, k). Note that the maximality hypothesis always holds, automatically, whenever we have
the generic situation with z and the af, b7, ¢/, d] arbitrary (commuting) symbols.

To prove that (Zbound) is sharp, take F(n,k) = 1/((1)x(1)n—x) and note that L cannot be 0,
since otherwise it would have been gosperable with respect to k, but it is not, as can be seen by
performing the Gosper algorithm[G] on it. &

q-Theorem. Let
F(n,k) = POL(¢",¢") - H(n,k) , (qProper Hypergeometric)

where POL(q"™,q*) is a Laurent polynomial in (¢”,¢*), and

A B
Hj:l[a‘;'l]a;.n+ajk Hj:l [b;'l]b;.n—bjk Jk(k—l)/2zk

H(n,k) = =7 5
Hj:l [C;'I]c;.n+c]~k Hj:l [d;!]d;.n—djk

(qPureHypergeometric)

where the a;, a}, b;, b, c;, c;, dj, d; are non-negative integers, and z, a’j, b, ¢/, dj are indeterminates,

VERG R VRl VR R/ I e
and J is an integer. We also assume that the factorization in (¢ Proper Hypergeometric) is mazimal,

i.e. POL(q™,q") is as ‘large’ as possible. Let

A c D B
L=max| J+ Zaj2 , ch2 +max | —J + Zdjz , ijz . (¢ZBound)
7j=1 7j=1 Jj=1 7j=1
There exist polynomials in ¢", eg(q™),...,er(q"), not all zero, and a rational function R(q",q*)

such that G(n, k) := R(q", ¢*)F(n, k) satisfies

L
ei(q")F(n+1i,k) =Gn,k+1) — G(n, k) . (¢Zpair)
i=0
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Furthermore, in general, L, cannot be made any smaller.

Proof: Let

A 17 B /!
F(n,k) _ Hj:l[a’j]a;.n-}-ajk Hj:l[bj]b;.n—bjk qu(k—l)/2Zk

D
Hf:l [c;!]c; (n+L)+cjk Hj:l [d;!]d; (n+L)—d;k
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A D
F(k) = 2¢”% [[la}m + ak + affla; [[1d5(n + L) — d;k + dff — d;]a

J=1 J=1

J bl

and

::]Q

B
= H[b;.n — bjk + b — b,

j=1 _7:1

Note that H(n,k + 1)/H(n,k) = f(k)/g(k). Write

“(n+ L) + cjk + cf]e;

G(n,k) =gk — )X (k)H (n,k) . (gAnsatz)

Substituting into (Zpair) and dividing both sides by H (n, k), shows that it is equivalent to

FR)X(k+1) —g(k—1)X(k) - h(¢*) =0 , (¢Gosper)
where .
)= ei(q")POL(q"q",q") - Hintik)
=0 (n k)

Note that h(q*) is a Laurent polynomial (in ¢*) since

H(n+1,k) _
H(n, k)
A B C D
H[a;n+ajk+a;-']m;_ H[b;-’n—bjk—Fb;-,]ib; H[C;-n—FCjk-I-CQ-,-FZ.CQ](L_i)C;_ H[d;-n—djk+d;-,+id;-](L_i)d;_
7j=1 7j=1 7j=1 7j=1
Let
M, := —ldeg(h) — maz(—ldeg(f), —ldeg(g)) , Mz :=deg(h) — maz(deg(f),deg(g))

We claim that (¢gGosper) can always be solved (non-trivially) with X (k) a Laurent polynomial of
q"* of low-degree —M; and degree M,. Writing

Mo

Xk = > =ld")@") (qAnsatz1)

substituting into (¢qGosper), and setting all the coefficients to 0, yields —ldeg(h)+deg(h)+1 homoge-
neous linear equations for the My+Ms+L+2 unknowns ey(q"), ... ,er(¢"), and z_pz, (¢™), - - -, Tar, (¢™)-
For such a not-all-zero solution to exist, we need # unknowns — # equations —1 >0, i.e. (M; +
Ms+L+2)—(—ldeg(h)+deg(h)+1)—1 > 0, i.e. L > max(deg(f),deg(g))+maz(—Ildeg(f),—ldeg(g))-
But

A D c B
deg(f) = J+Z a;? , —ldeg(f) = —J—I—Z d;? , deg(g Z ,  —ldeg(g Z bi® .
._ . j=1 j=1
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This concludes the proof ezcept that we did not rule out the possibility of eg(¢™),. .., er(¢q") being
all zero (all we are guaranteed, so far, is that it is not possible for all of ey(g™),...,er(¢"), and
z_n,(q"),-- -, 2o, (¢") to be zero). But if all the e;(¢")’s are zero, then h(g*) is zero and (¢Gosper)
becomes

X(k+1) gk-1)

X(k) — f(k)
Since X (k) is a Laurent polynomial in ¢*, it means that the roots of f(k) = 0 differ from the roots

of g(k — 1) = 0 by fized non-negative integers, which is not possible because of the maximality
hypothesis about POL(q", ¢*). Note that the maximality hypothesis always holds, automatically,

whenever we have the generic situation with z and the a7, b7, ¢, d} arbitrary symbols.

To prove that (gZbound) is sharp, take F(n,k) = ¢**~1/2/([1]4[1],—x), and note that L cannot
be 0, since otherwise it would have been g-gosperable with respect to k, but it is not, as can be
seen by performing the g-Gosper algorithm ([Kor|[PR], or use gEKHAD) on it.

Comments

1. The bounds in (Z Bound) and (¢Z Bound) considerably improve those of [WZ] (Theorems 3.1 and
5.1, see also [PWZ] and [Koe]), that relied on Sister Celine’s Technique, and, as we proved, are sharp
for the generic case. However, sometimes a system of linear equations with more equations than
unknowns does have a non-trivial solution, and also, sometimes one can find higher-degree polyno-
mial solutions to (Gosper) and (qGosper), so in specific cases, it is possible to have recurrences of
lower order. This is the case for all the non-trivial classical hypergeometric (binomial-coefficient)
sums that admit a closed-form evaluation.

2. The proofs imply new, simplified, versions of the Zeilberger[Z1][Z2][PS] and ¢-Zeilberger[Kor|[PR]
algorithms. These new versions do not rely on Gosper’s algorithm ezplicitly, but, of course, were
inspired by it. In fact, they were designed by applying the Zeilberger and ¢-Zeilberger algorithms
once and for all, to the generic cases. It so happens, that in this case, a simplified version of Gosper
(and g-Gosper) suffices, and it is so simple that it can be incorporated implicitly. So old-Zeilberger
(and hence Gosper and ¢-Gosper) is the Wittgensteinian ladder that we must throw away after we
climbed it.

The running-time complexity of these new versions are comparable to the old versions, but their
program-length complezity (in the sense of Chaitin-Kolmogorov) are considerably smaller.

The simplified Zeilberger and ¢-Zeilberger algorithms, apply also to specific, non-generic summands.
Start by taking L = 0 and try the ansatzes (Ansatz) and (¢Ansatz), but with M (for the g-case:
M, M>) possibly larger than the ones in the theorem (which are determined by plugging them into
(Gosper) or (¢qGosper), and equating the leading coefficient(s), and finding out whether they can
vanish for integral M (or M;, M3)). Then one solves the resulting set of linear equations. If there is
no non-trivial solution, then one increases L by 1, until success is reached. The theorems guarantee
that eventually we will succeed, at worst, with the L’s given by (ZBound) and (¢Z Bound).
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3. These simplified versions are implemented in the Maple packages ZEILBERGER and qZEILBERGER
available from
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ sharpZ.html .

4. The present article was intentionally written in a terse, unmotivated, style, in order to emphasize
its simplicity and self-containedness. Readers who wish to see more motivation are welcome to look
at an earlier version, that only covers the ordinary case, that is also available from the above
webpage.

5. Sometimes the original Zeilberger algorithms work even when the summand F(n,k) is not
proper-hypergeometric, see [A] and [CHM)]. Hence the new simplified versions do not completely
supersede the old versions.

Acknowledgement. We wish to thank the referees for many helpful comments on two earlier

versions.
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