
The Symbolic Goulden Jackson Cluster Method

Xiangdong Wen

1. Introduction
Let V andB be a finite alphabet and a finite set ofbad words respectively. Supposea(n) is the total number of words with
lengthn that avoid the bad words inB as factors. The aim is to find the generating function

f(s) =

1X
n=0

a(n)sn (1)

in an efficient way.

The Goulden-Jackson cluster method[GoJ1,GoJ2] has been beautifully explained, extended, and implemented by J. Noonan
and D. Zeilberger([?]). The Goulden-Jackson cluster method needs to solve a system ofjBj linear equations and it is much
more efficient than the Naive approach which needs to solve a system of

P
jdjjvj�1, v 2 B, linear equations. However,

their Maple packages require that the cardinality of the alphabet is anumericargument, rather thansymbolic. In this paper, I
extend the method into the latter case, thereby initiating the Symbolic Goulden-Jackson Method.

2. Review of the Goulden Jackson Cluster method
Recall that afactor of a wordw1w2 � � �wn is any of the wordswiwi+1 � � �wj�1wj , for 1 � i � j � n. Such a factor is
represented by[i; j]. Two factors[i; j] and[i0; j0] overlap if they have at least one common letter, i.e.i < i0 � j:

Define theweight of a wordw asweight(w) = sjwj, wherejwj is the length ofw. Obviously, the generating function (1)
becomes

f(s) =
X

w2L(B)

weight(w);

whereL(B) is the set of all words that avoid the members ofB as factors.

A word with some factors marked is called amarked word. Here we only consider the case where the marked factors are
the words inB. A marked word could be written in the following form:

(w; [i1; j1]; [i2; j2]; � � � ; [il; jl]); where[ir; jr] 1 � r � l; are the marked factors.

For example, letV = f1; 2; 3g,B = f123; 231; 312g andw = 12312: There are23 marked words forw:

(12312; ); (12312; [1; 3]); (12312; [2; 4]); (12312; [3; 5]);
(12312; [1; 3]; [2; 4]); (12312; [1; 3]; [3; 5]); (12312; [2; 4]; [3; 5]); (12312; [1; 3]; [2; 4]; [3; 5]):

Define theweight of a marked wordw with marked factorsS, whereS � B, as:

weight(w; S) = (�1)jSjsjwj;

wherejSj is the cardinality ofS andjwj the length ofw.

LetV � be the set of all words generated byV , andBad(w) be the set of bad factors inw. We have

1



Theorem 1 :
f(s) =

X
w2L(B)

weight(w) =
X
w2V �

X
S�Bad(w)

weight(w; S): (3)

Proof: The basic idea in the proof is to use the inclusion-exclusion principle. LetNB(w) denote the number of marked
factors, that belong toB, ofw. Then,

f(s) =
P

w2L(B)weight(w)

=
P

w2V � weight(w)0NB(w)

=
P

w2V � sjwj[1 + (�1)]NB(w)

=
P

w2V � sjwj
P

S�Bad(w)(�1)jSj

=
P

w2V �

P
S�Bad(w)(�1)jSjsjwj

=
P

w2V �

P
S�Bad(w)weight(w; S)

By the theorem, the calculation of the generating function (1) is then transfered to finding the generating function for the
weighted marked words (3), and it is much easier to weight-count by the Goulden-Jackson cluster method.

A cluster is a marked word
(w1w2 � � �wn; [i1(= 1); j1]; [i2; j2]; � � � ; [il; jl(= n)]);

where[ik; jk] overlaps with[ik+1; jk+1], for all k = 1:::l� 1.

A marked word is either an empty word, or ends with a letter that is not part of a cluster, or ends with a cluster. Peeling-off
the maximal cluster, we get a smaller marked word. So we have the following decomposition:

M = fempty wordg [MV [MC:

Taking weight on both sides and solve forweight(M) we have,

f(s) = weight(M) =
1

1� ds� weight(C)
: (4)

The only step left is to findweight(C).

For a given wordw = w1w2 � � �wn, letHEAD(w) be the set of all proper prefixes:

HEAD(w) := fw1w2 � � �wkjk = 1; 2; � � � ; n� 1g;

andTAIL(w) be the set of all proper suffixes

TAIL(w) := fwkwk+1 � � �wnjk = 2; 3; � � � ; ng;

and let
OV ERLAP (u; v) := TAIL(u) \HEAD(v):

Letu=v denote the operation of the wordu chopping off its headv. For example:12321=12 = 321: Let

u : v =
X

x2OVERLAP (u;v)

weight(v=x):

The set of clustersC, can be partitioned into
C =

[
v2B

C[v] ;

2



whereC[v] (v 2 B), is the set of clusters whose last entry isv.

Given a cluster inC[v], v 2 B, it either consists of justv, or choppingv results in a smaller cluster inC[u], u 2 B if
OV ERLAP (u; v) is not empty. On the other hand, given a cluster inC[u], we could always reconstitute the bigger cluster
in C[v] by adding some words inOV ERLAP (u; v): Hence there exists a bijection:

C(v) $ f(v; [1; jvj])g
[
u2B

C[u]OV ERLAP (u; v):

Taking weights on both sides, we have:

weight(C[v]) = (�1)weight(v) �
X
u2B

(u : v)weight(C[u]): (5)

This is a system ofjBj linear equations withjBj unknownsweight(C[v]); v 2 B:

After solving these equations we could simply obtainweight(C) by: weight(C) =
P

v2B weight(C[v])

Notice thatweight(C) is independent of the cardinality of the alphabet, we can see from equation (4) that the symbolic
Goulden Jackson could be easily implemented.

3 Symmetric Cases

Given an alphabetV = f1; 2; 3g, let us find the generating function for the number of words which do not have three
consecutive different letters as factors, i.e.B = f123; 132; 213; 231; 321g.

By the Goulden-Jackson cluster method, we need set up and solve a system ofjBj = 6 linear equations with six unknowns
weight(C[v]), v 2 B :

8>>>>>><
>>>>>>:

weight(C[123]) = �s3 � s2 weight(C[312])� s2 weight(C[321])� sweight(C[231])

weight(C[132]) = �s3 � s2 weight(C[231])� s2 weight(C[213])� sweight(C[321])

weight(C[213]) = �s3 � s2 weight(C[312])� s2 weight(C[321])� sweight(C[132])

weight(C[231]) = �s3 � s2 weight(C[123])� s2 weight(C[132])� sweight(C[312])

weight(C[312]) = �s3 � s2 weight(C[213])� s2 weight(C[231])� sweight(C[123])

weight(C[321]) = �s3 � s2 weight(C[123])� s2 weight(C[132])� sweight(C[213])

:

By the symmetry ofB, all the clustersC[v] have the same generating functionweight(C). Thus we can reduce these six
equations to one equation:

weight(C[123]) = �s3 � 2s2 weight(C[123])� sweight(C[123]):

After solving it we have

weight(C) = 6weight(C[123]) =
�6s3

1 + 2s2 + s
;

and

f(s) =
1

1� 3s� �6s3

1+2s2+s

= �
2s2 + s+ 1

s2 + 2s� 1
:

Assuming the cardinality of the alphabetV changed,V = f1; 2; 3; � � �dg, let us find the generating function for the number
of words which do not have three consecutive different letters as factors, i.e.

B = f123; 124; 125; � � � ; d(d� 1)(d� 3); d(d� 1)(d� 2)g:

3



By the original Goulden-Jackson cluster method, we need set up and solve a system ofjBj = d(d�1)(d�2) linear equations.
Notice the symmetry ofB, we only need set up and solve one equation:

weight(C[123]) = �s3 � (d� 1)(d� 2)s2 weight(C[123])� (d� 2)sweight(C[123]):

Thus,

weight(C) = d(d� 1)(d� 2)weight(C[123]) =
�d(d� 1)(d� 2)s3

1 + (d� 1)(d� 2)s2 + (d� 2)s
;

and

f(s) =
1

1� ds� �d(d�1)(d�2)s3

1+(d�1)(d�2)s2+(d�2)s

=
(�d2 + 3d� 2)s2 + (�d+ 2)s� 1

(d� 2)s2 + 2s� 1
:

In general, if the set of bad wordsB is invariant under the action of the symmetric group, we could take advantage of the
symmetry ofB.

Two words u,v areequivalent, u � v, if there exists a permutation� such that�(u) = v: By symmetry, all the elements in
the equivalence class ofv have the same cluster generating functionweight(C[v]) .

Define thedimensionof a letterv, dim(v), as the number of different letters appeared inv. Then the equivalence class ofv
has
�

d
dim(v)

�
different words.

Suppose the bad words setB is partitioned into different equivalent classesB1; B2; B3; � � � ; Bk, andb1; b2; b3; � � � ; bk are
the representives respectively. Define(bi : Bj) :=

P
b2Bj

(bi : b); then the system (5) becomes

weight(C[bi]) = �weight(bi)�
kX
j=1

(bi : Bj)weight(bj); i = 1; � � � ; k: (7)

It is a system ofk linear equations withk unknownsweight(C[bi]), i = 1; � � � ; k. Remember that k is the number of different
equivalent classes inB. Now there are many fewer equations and many fewer unknowns than in the original Goulden-
Jackson cluster method, and thus everything is much more efficient. After solving the system, we could obtainweight(C)
by

weight(C) =
kX
i=1

�
d

dim(bi)

�
weight(C[bi]): (8)

Givenu = u1u2u3 � � �un, letHi(u) be the HEAD ofu with lengthi, i.e. Hi(u) := u1u2 � � �ui. LetTi(u) be the TAIL ofu
with lengthi, i.e.Ti(u) := un�i+1un�i+2 � � �un�1un. We have

bi : Bj =

min(jbij;jbjj)�1X
m=1

I(Tm(bi) � Hm(bj))

�
d

dim(bj)� dim(Hm(bj))

�
sjvj�m;

where

I(Tm(bi) � Hm(bj)) =

�
1; if Tm(bi) andHm(bj) are equivalent;
0; otherwise:

In the two examples below, the first can still be done with the unextended Goulden-Jackson, since the number of letters is
numeric,3, but the second one requires the new extension, since the number of letters isd, i.e. a symbol.

Example 1: Let V = f1; 2; 3g. Find the generating function for the number of words which do not have three consecutive
different letters or three consecutive same letters as factors, i.e.

B = f123; 132; 213; 231; 312; 321; 111; 222; 333g:

4



By the symmetry ofB we have,

weight(C[123]) = weight(C[132]) = � � � = weight(C[321]);

and
weight(C[111]) = weight(C[222]) = weight(C[333]):

Thus by system (5) and equation (8), we have
�

weight(C[123]) = �s3 � 2s2 weight(C[123])� sweight(C[123])� s2 weight(C[111])

weight(C[111]) = �s3 � 2s2 weight(C[123])� s2 weight(C[111])� sweight(C[111])
;

and
weight(C) = 6weight(C[321]) + 3weight(C[111]:

Solving the system, finally we have

f(s) =
1

1� 3s� weight(C)
=

1

1� 3s� [6weight(C[321]) + 3weight(C[111])]
= �

3s2 + s+ 1

2s� 1

Example 2: Let V = f1; 2; 3; � � � ; dg. Find the generating function for the number of words which do not have three
consecutive different letters or three consecutive same letters as factors.

By (5) and (8), we have
�

weight(C[123]) = �s3 � (d� 1)(d� 2)s2 weight(C[123])� (d� 2)sweight(C[123])� s2 weight(C[111])

weight(C[111]) = �s3 � (d� 1)(d� 2)s2 weight(C[123])� s2 weight(C[111])� sweight(C[111])
;

and
weight(C) = d(d � 1)(d� 2)weight(C[321]) + dweight(C[111]):

Finally, we could obtain

f(s) =
1

1� ds� weight(C)
=

(�d2 + 2d)s3 + (�d2 + 2d� 1)s2 + (1� d)s� 1

(d� 1)s2 + s� 1

4 Finite Memory Self-Avoiding Walks

The set of s-called self-avoiding walks could be regarded as a the set of words in the alphabetV = f1;�1; 2;�2; � � � g,
that avoid, as factors, words with as manyi’s as�i’s for eachi between1 andd. In other words, words avoiding the ‘bad
words’ inB = f[1;�1]; [1; 2;�1;�2] � � �g and all their images under the action of group of signed permutations. J. Noonan
([3]) has a detailed discussion about the finite memory self-avoiding walks for the memory up to8. We have implemented
the procedures for symmetric cases under signed permutations too. Using our maple package we could automatically get
the formula for the generating functions for 2-step, 4-step and 6-step memory self-avoiding walks. For 8-step memory self-
avoiding walk, the package set up a system of 112 linear equations but our own computer was not big enough to solve
it.

5. The Maple package
All the procedures are included in the package “SYMBOLICGJ”, downloadable from the web address:
http://www.math.temple.edu/˜wen/gj/gj/SYMBOLICGJ . The program takes the cardinality of the alphabet as symbolic input.
Moreover it could compute generating functions for the symmetric cases and for the finite memory self avoiding walks.

6. Acknowledgment
This work will be a part of the author’s Ph.D. dissertation, written under the direction of Professor Doron Zeilberger (Rutgers
University). I wish to thank Dr. Zeilberger for his generous support and encouragement.

5



References

[1] [Brinkhuis] J.Brinkhuis, “Non-repetitive sequences on three symbols”,Quart. J. Math, Oxford(2), 145-149, 34(1983).

[2] [Zeilberger] John Noonan and Doron Zeilberger, “ The Goulden-Jackson Cluster Method: Extensions, Applications, and Implemen-
tations”, J. Difference Eq. Appl., 355-377. 5(1999),

[3] [Noonan] John Noonan, “ New Upper Bounds for The Connective Constants of Self-Avoiding Walks”,J. Stat. Phys., 871-888.
91(1998),

[4] [CoGuy] J.H. Conway and R.K. Guy, “The book of numbers”,Copernicus, Springer, New York.(1996).

[5] [MS] N. Madras,and G. Slade, “The Self avoiding Walk”, Birkhauser, Boston (1993).

[6] [GoJ1] I. Goulden and D.M. Jackson,An inversion theorem for cluster decompositions of sequences with distinguished subsequences,
J. London Math. Soc.(2)20 (1979), 567-576.

[7] [GoJ2] I. Goulden and D.M. Jackson,”Combinatorial Enumeration”, John Wiley, 1983, New York.

Department of Mathematics, Temple University, Philadelphia, PA 19122. wen@math.temple.edu

6


