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Abstract: WE PROVE THAT THE MINIMUM NUMBER (ASYMPTOTICALLY) OF MONOCHROMATIC SCHUR TRIPLES
n®
22
GAP DISCOVERED BY M. PRIMAK. (THE REVISION ALSO CORRECTS (AT NO EXTRA COST) A DISCREPANCY BETWEEN

THAT A 2-COLORING OF [1,m] caN nave 18 25 4+ O(n). THIS REVISED VERSION FILLS IN A MINOR AND SUBTLE

THE SOLUTION IN THE PAPER AND THE SOLUTION OBTAINED BY MAPLE. IN THE PAPER H1/2 snouLD BE Hy AND

Hj snourp BE Hj /3 FOR THE SOLUTIONS TO AGREE.)

Tianjin, June 29, 1996: In a fascinating invited talk at the SOCA 96 combinatorics conference
organized by Bill Chen, Ron Graham proposed (see also [GRR], p. 390):

Problem ($100): Find (asymptotically) the least number of monochromatic Schur triples {3, j, i+
j} that may occur in a 2-coloring of the integers 1,2,...,n.

By renaming the two colors 0 and 1, the above is equivalent to the following

Discrete Calculus Problem: Find the minimal value of

F(zy,...,xp) = Z [ziwwiy; + (1 —2) (1 —25)(1 — 2i45) ],

1<i<j<n
i+j<n

over the n-dimensional (discrete) unit cube {(z1,...,2,)lx; = 0,1}. We will determine all local
minima (with respect to the Hamming metric), then determine the global minimum.

Partial Derivatives: For any function f(x1,...,z,) on {0,1}" define the discrete partial deriva-
tives O f by Orf(x1, ..., Tryooyy) = f(@1, o Ty ymy) — (o1, ooy L =2y oy 2p).

If (21,...,2y,) is a local minimum of F', then we have the n inequalities:

O F(z1,...,2p) <0 |, 1<r<n.

A purely routine calculation (applicable Maple routines: diff1l, dif) shows that (below x(5) is
1(0) if S is true(false))
OrF(x1,...,2p) =

(2xr—1){;xi +§ i — (n— EJ) — x(r> g) — (22 —1) +a,x(r> g) 41— (2 +a0,)X(r < Z)} .
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Since we are only interested in the asymptotic behavior, we can modify F' by any amount that is
O(n). In particular, we can replace F(z1,...,x,) by

n/2

G(xy,...,xn) = F(r1,...,2, +Zx1x21—1 —*sz

Noting that (2z, — 1)2 =1 and (2z, — 1)z, = x,- on {0,1}", we see that for 1 <r <mn,
0,G(x1, ... a0) = (22, — 1) Zn:m + nix ~m— 2]~ L <n2)b = Lo <nj2)— 172
s i=1 i=1 2 : a 2 B

Let k = Y. , ;. Since at a local minimum (21, ..., 2,) we have 9,G(z1,..
that any local minimum (21, ..., 2,) satisfies the

., zn) < 0, it follows

Ping-Pong Recurrence: Choose a,b € {0,1} arbitrarily each time H or H is used, where H and
H are the following functions:

~ 0, ify>1/2;
H(y):=< 1, ify<0;
a, f0<y<1/2.

_ 0, ify>1;
H(y) ::{1, if y < —1;

b, if —1<y<l1.

Then we must have, for r =n,n—1,...,n— |n/2] +1,
m=H|k—n+ { J sz , (Right Volley)
~ — 1 n
Zn-ri1=H [2k—n—1/2+ \‘TL;_FJ — sz , (Left Volley)

and if n is odd then z(,41)/2 = f[(k; —n+ L L)+ Z(" 1)/2 zj).

These equations determine a solution (depending upon the choices of the a’s and b’s made along
the way), z (if it exists), in the order z,, z1, 2,1, 22, . ... When we solve the Ping-Pong recurrence
we forget the fact that Y . | z; = k. Most of the time a solution will not satisfy this last condition,
but when it does, we have a genuine local minimum. Note that any local minimum must show up
in this way.

Solutions of the Ping-Pong Recurrence: By playing around with the Maple routine ptor2 in
our Maple package RON (available from either author’s website), we were able to find the following
solutions, for n sufficiently large, to the Ping-Pong recurrence. As usual, for any word (or letter)
W, W™ means ‘W repeated m times’.



Let w = 2k — n, k # n/2 (this case must be dealt with separately). By symmetry we may assume
that £ > n/2. Then 0 < w < n. If w > n/2 then the only solution is 0. If w < n/2, then let s be
the unique integer 0 < s < oo, that satisfies n/(12s + 14) < w < n/(12s + 2).

Case I: If n/8 < w < n/2 then the solutions are:

OL%J 17— |5 ]—w—c1 0w+c1

where ¢; € {—1,0,1}.
Case II: If n/(12s + 8) < w < n/(12s + 2) then the solutions are

04w+clan/2J 74w7010n7Ln/2J77w7(02+03+04)16w+030w+04 for s = 1;

04w+04<16w+c§i 06w+cgi)s/2Q(06w+c;i 16w+c§i)s/20w+09 for s > 1.
Si
J
arbitrary mix of r zeroes and ones (where r is the unique integer such that the length of this

where the ¢;’s and ¢}'’s are bounded constants (independent of n) and @ can be an (almost)

interval is n). Further, the number of ones in @ is at most 12w. Notation: (1) the c}'’s can be
different constants with i ranging from 1 to s/2; (2) if s is odd (ab)*/? is (ab)*~D/2q.

Case III: If n/(12s 4+ 14) < w < n/(12s + 8) then the solutions are

QAw+di ] n—5w—(di+dz) uwtdz for s = 0;
Qhwtds (16wtdit 6w tds'ys/2Q(6w+dg' 6wtdr')s/2qutds  for g > 0,

where the d;’s and d}'’sare bounded constants (independent of n) and @ can be an (almost)

arbitrary mix of r zeroes and ones, with the number of ones in () at most 6w.
Case IV: if w =0 (i.e. s = 00), the solutions are:

091 (192" 09" )/ (G Q(9a” 195"/ (2G2)

where g1 € {0, 1,2}, the other g;’s and g."’s are bounded between 3 and 11, @ is an (almost)

7
arbitrary mix of r zeroes and ones with the number of ones bounded between 0 and 22, G; =

S (gh 4 gii), and G = 32, (g7 + g2).
Proof: Routine verification!

Now it is time to impose the extra condition that > 1, z; = k (= (w + n)/2). With Cases I and
IT a routine calculation yields a contradiction of the applicable range of w when n is sufficiently
large. For Case III, a routine calculation yields a local minimum of w = n/11if s =0. If s > 0
argue as follows. Let t be the number of 1’s in . Recall that r is the total number of 0’s and
s in Q. Let w.(s) = n/(12s + ¢) where we must have 8 < ¢ < 14. Since we need Y ;" ; z; = k
(= (w+n)/2), we see that 6w.(s)s+t = n(12s+c+1)/(24s+2c¢) gives t = (c+ 1)w.(s)/2. Further,
since the number of 1’s in @ is bounded by 6w.(s), we find that we must have ¢ < 11. We also
must have r = n—w.(s)(12s+5), by the definition of r. Using the simple inequality r > ¢, we have
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n—w.(s)(12s+5) > (c+ 1)w.(s)/2. From this deduce that ¢ > 11. Hence we must have ¢ = 11 at
a local minimum. Thus the local minimums for Case III, s > 0, are ws = n/(12s + 11). Case IV

gives infinitely many local minimums. Hence

The Local Minima Are Asymptotically Equivalent (mod O(n)) to:

{ Z = 04ws (16ws00w) 3 16ws (00w=15w=) 50 for 0 < 5 < oo (where ws := 157457),

Zk, = (011t)"/ 0 for 3< ¢ <11
A routine calculation [R] shows that for 0 < s < co

L2548 )n2 + O(n),

F(Z) =
(Zs) 16(12s + 11

which is strictly increasing in s. An easy calculation shows F(Z! ) = (1/16)n? + O(n) for any
natural number ¢.

...And The Winner Is: Z, = 0**/11167/119n/11 setting the world-record of (1/22)n? + O(n).

An Extension Here we note that our result implies a good upper bound for the general r-coloring
of the first n integers; if we r-color the integers (with colors Ci ... C,) from 1 to n then the minimum
number of monochromatic Schur triples is bounded above by
2
22r—311 + O(n)

This comes from the following coloring:

Color(i) = Cj if 5 <i< gty for1<j<r—2,
Color(i) = Cr_y  if 1 <i < 5:3%— or 5ot < i < 5,
Color(i) = C, if A <i < Ao

Note: Tomasz Schoen[S], a student of Tomasz Luczak, has independently solved this problem.
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