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Based on a reduction process, we rewrite a hypergeometric term as 
the sum of the difference of a hypergeometric term and a reduced 
hypergeometric term (the reduced part, in short). We show that 
when the initial hypergeometric term has a certain kind of 
symmetry, the reduced part contains only odd or even powers. As 
applications, we derived two infinite families of supercongruences.
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1. Introduction

In recent years, many supercongruences involving combinatorial sequences have been discovered, 
see for example, Sun (2014) and Osburn et al. (2016). The standard methods for proving these con-
gruences include combinatorial identities (Sun, 2013), finite field hypergeometric series (Ahlgren and 
Ono, 2000), symbolic computation (Osburn and Schneider, 2009).

We are interested in the following supercongruence conjectured by van Hamme (1997),

p−1
2∑

k=0

(−1)k(4k + 1)

(
(1/2)k

(1)k

)3

≡ (−1)
p−1

2 p (mod p3),

where p is an odd prime and (a)k = a(a + 1) · · · (a + k − 1) is the rising factorial. This congruence 
was proved by Mortenson (2008), Zudilin (2009) and Long (2011) by different methods. Sun (2012)
proved a stronger version for primes p ≥ 5,
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p−1
2∑

k=0

(−1)k(4k + 1)

(
(1/2)k

(1)k

)3

≡ (−1)
p−1

2 p + p3 E p−3 (mod p4),

where En is the n-th Euler number defined by

2

ex + e−x
=

∞∑
n=0

En
xn

n! .

A similar congruence was given by van Hamme (1997) for p ≡ 1 (mod 4):

p−1
2∑

k=0

(4k + 1)

(
(1/2)k

(1)k

)4

≡ p (mod p3).

Long (2011) showed that in fact the above congruence holds for arbitrary prime p ≥ 5 modulo p4. 
Motivated by these two congruences, Guo (2017) proposed the following conjectures (corrected ver-
sion).

Conjecture 1.1.

• For any odd integer m, there exists an integer am such that for any odd prime p and positive integer s,

ps−1
2∑

k=0

(−1)k(4k + 1)m
(

(1/2)k

(1)k

)3

≡ am · ps(−1)
(p−1)s

2 (mod ps+2). (1.1)

• For any odd integer m, there exists an integer bm such that for any odd prime p ≥ (m + 1)/2 and positive 
integer s,

ps−1
2∑

k=0

(4k + 1)m
(

(1/2)k

(1)k

)4

≡ bm · ps (mod ps+3). (1.2)

Liu (2019) and Wang (2018) confirmed the conjectures for s = 1 and some initial values m. Jana 
and Kalita (2019) and Guo (2019) confirmed (1.1) for m = 3 and s ≥ 1. We will prove a stronger 
version of (1.1) for the case of s = 1 and arbitrary odd m and a weaker version of (1.2) for the case of 
s = 1 and arbitrary odd m by a reduction process.

Recall that a hypergeometric term tk is a function of k such that tk+1/tk is a rational function of k. 
Our basic idea is to rewrite the product of a polynomial f (k) in k and a hypergeometric term tk as

f (k)tk = �k(g(k)tk) + h(k)tk = (g(k + 1)tk+1 − g(k)tk) + h(k)tk,

where g(k), h(k) are polynomials in k such that the degree of h(k) is bounded. To this aim, we con-
struct a polynomial x(k) such that �k(x(k)tk) equals the product of tk and a polynomial u(k) and that 
f (k) and u(k) has the same leading term. Then we have

f (k)tk − �k(x(k)tk) = ( f (k) − u(k))tk

is the product of tk and a polynomial of degree less than that of f (k). We call such a reduction 
process one reduction step. Continuing this reduction process, we finally obtain a polynomial h(k)

with bounded degree. We will show that for tk =
(

(1/2)k
(1)k

)r
, r = 3, 4 and an arbitrary polynomial of 

form (4k + 1)m with m odd, the reduced polynomial h(k) can be taken as (4k + 1). This enables us to 
reduce the congruences (1.1) and (1.2) to the special case of m = 1, which is known for s = 1.
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We notice that Pirastu and Strehl (1995) and Abramov (1975, 1995) gave the minimal decom-
position when tk is a rational function, Abramov and Petkovšek (2001, 2002) gave the minimal 
decomposition when tk is a hypergeometric term, and Chen et al. (2015) applied the reduction to 
give an efficient creative telescoping algorithm. These algorithms concern a general hypergeometric 
term. While we focus on a kind of special hypergeometric terms so that the reduced part h(k)tk has 
a nice form.

The paper is organized as follows. In Section 2, we consider the reduction process for a general 
hypergeometric term tk . Then in Section 3 we consider those tk with the property a(k) is a shift of 
−b(k), where tk+1/tk = a(k)/b(k). As an application, we prove a stronger version of (1.1) for the case 
s = 1. Finally, we consider the case when a(k) is a shift of b(k), which corresponds to (1.2). In this 
case, we show that there is a rational number bm instead of an integer such that (1.2) holds when 
s = 1.

2. The difference space and polynomial reduction

Let K be a field of characteristic zero and K [k] be the ring of polynomials in k with coefficients 
in K . Let tk be a hypergeometric term. Suppose that

tk+1

tk
= a(k)

b(k)
,

where a(k), b(k) ∈ K [k]. It is straightforward to verify that

�k (b(k − 1)x(k)tk) = (a(k)x(k + 1) − b(k − 1)x(k))tk. (2.1)

We thus define the difference space corresponding to a(k) and b(k) to be

Sa,b = {a(k)x(k + 1) − b(k − 1)x(k) : x(k) ∈ K [k]}.
We see that for f (k) ∈ Sa,b , we have f (k)tk = �k(p(k)tk) for a certain polynomial p(k) ∈ K [k].

Let N, Z denote the set of nonnegative integers and the set of integers, respectively. Given 
a(k), b(k) ∈ K [k], we denote

u(k) = a(k) − b(k − 1), (2.2)

d = max{deg u(k),deg a(k) − 1} (2.3)

and for a(k) �= 0,

m0 = − lc u(k)/ lc a(k), (2.4)

where lc p(k) denotes the leading coefficient of p(k). Here we define deg 0 = −∞ and lc 0 = 0 for 
convenience.

We first introduce the concept of degeneration.

Definition 2.1. Let a(k), b(k) ∈ K [k] with a(k) �= 0 and let u(k), m0 be given by (2.2) and (2.4). If

deg u(k) = deg a(k) − 1 and m0 ∈N,

we say that the pair (a(k), b(k)) is degenerated.

We will see that the degeneration is closely related to the degrees of the elements in Sa,b .

Lemma 2.2. Let a(k), b(k) ∈ K [k] and d, m0 be given by (2.3) and (2.4). For any polynomial x(k) ∈ K [k], let

p(k) = a(k)x(k + 1) − b(k − 1)x(k).

We have
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deg p(k)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

< d + m0, if (a(k),b(k)) is degenerated

and deg x(k) = m0,

= deg u(k) + deg x(k), if x(k) is a constant,

= d + deg x(k), otherwise.

Proof. If a(k) = 0, we have u(k) = −b(k − 1) and thus

deg p(k) = deg u(k) + deg x(k) = d + deg x(k).

Now assume a(k) �= 0. Notice that

p(k) = u(k)x(k) + a(k)(x(k + 1) − x(k)).

If x(k) is a constant, we have p(k) = u(k)x(k) and the assertion holds. Otherwise, we have

deg a(k)(x(k + 1) − x(k)) = deg a(k) + deg x(k) − 1.

If the leading terms of u(k)x(k) and a(k)(x(k + 1) − x(k)) do not cancel, the degree of p(k) is d +
deg x(k). Otherwise, we have deg u(k) = deg a(k) − 1 and

lc u(k) + lc a(k) · deg x(k) = 0,

i.e., deg x(k) = m0. �
It is clear that Sa,b is a subspace of K [k], but is not a sub-ring of K [k] in general. Let [p(k)] =

p(k) + Sa,b denote the coset of a polynomial p(k). We see that the quotient space K [k]/Sa,b is finite 
dimensional.

Theorem 2.3. Let a(k), b(k) ∈ K [k] and d, m0 be given by (2.3) and (2.4). We have

K [k]/Sa,b =

⎧⎪⎪⎨
⎪⎪⎩

〈[k0], [k1], . . . , [kd−1], [kd+m0 ]〉, if (a(k),b(k)) is degenerated,

〈[k0], [k1], . . . , [kd]〉, if deg u(k) < deg a(k) − 1,

〈[k0], [k1], . . . , [kd−1]〉, otherwise.

Proof. If a(k) = 0, we have

Sa,b = {b(k − 1)x(k) : x(k) ∈ K [k]}
and d = deg b(k). Therefore,

K [k]/Sa,b = 〈[k0], [k1], . . . , [kd−1]〉.
Now assume a(k) �= 0. For any nonnegative integer s, let

ps(k) = a(k)(k + 1)s − b(k − 1)ks.

We first consider the case when the pair (a(k), b(k)) is not degenerated. By Lemma 2.2, we have

deg ps(k) = d + s, ∀ s ≥ 0,

except for the case when deg u(k) < deg a(k) − 1 and s = 0. Suppose that p(k) is a polynomial of 
degree m > d. Then

p′(k) = p(k) − lc p(k)

lc p (k)
pm−d(k) (2.5)
m−d
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is a polynomial of degree less than m and p(k) ∈ [p′(k)]. By induction on m, we derive that for any 
polynomial p(k) of degree > d, there exists a polynomial p̃(k) of degree ≤ d such that p(k) ∈ [p̃(k)]. 
When deg u(k) ≥ deg a(k) − 1, we have p0(k) = u(k) is of degree d and thus we can further reduce 
the degree of p̃(k) by one. Therefore,

K [k]/Sa,b =
⎧⎨
⎩

〈[k0], [k1], . . . , [kd]〉, if deg u(k) < deg a(k) − 1

〈[k0], [k1], . . . , [kd−1]〉, otherwise.
.

Now we consider the case when (a(k), b(k)) is degenerated. By Lemma 2.2,

deg ps(k) = d + s, ∀ s �= m0 and deg pm0(k) < d + m0.

The above reduction process (2.5) works well except for the polynomials p(k) of degree d + m0. But 
in this case,

p(k) − lc p(k) · kd+m0

is a polynomial of degree less than d + m0. Then the reduction process continues until the degree is 
less than d. We thus derive that

K [k]/Sa,b = 〈[k0], [k1], . . . , [kd−1], [kd+m0 ]〉,
completing the proof. �
Example 2.1. Let n be a positive integer and

tk = (−n)k/k!,
where (α)k = α(α + 1) · · · (α + k − 1) is the raising factorial. Then

a(k) = k − n, b(k) = k + 1,

and

Sa,b = {(k − n) · x(k + 1) − k · x(k) : x(k) ∈ K [k]}.
We have

K [k]/Sa,b = 〈[kn]〉
is of dimension one.

3. The case when a(k) = −b(k + α)

In this section, we consider the case when a(k) = −b(k + α) for some α ∈ K and b(k) has a 
symmetric property. We will show that in this case, the reduction process maintains the symmetric 
property. Notice that in this case

u(k) = a(k) − b(k − 1) = −b(k + α) − b(k − 1)

has the same degree as a(k), the pair (a(k), b(k)) is not degenerated.
We first consider the relation between the symmetric property and the expansion of a polynomial.

Lemma 3.1. Let p(k) ∈ K [k] and β ∈ K . Then the following two statements are equivalent.

(1) p(β + k) = p(β − k) (p(β + k) = −p(β − k), respectively).
(2) p(k) is the linear combination of (k − β)2i, i = 0, 1, . . . ((k − β)2i+1, i = 0, 1, . . ., respectively).
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Proof. Suppose that

p(β + k) =
∑

i

cik
i .

Then

p(β − k) =
∑

i

ci(−k)i .

Therefore,

p(β + k) = p(β − k) ⇐⇒ c2i+1 = 0, i = 0,1, . . . .

The case of p(β + k) = −p(β − k) can be proved in a similar way. �
Now we are ready to state the main theorem.

Theorem 3.2. Let a(k), b(k) ∈ K [k] such that

a(k) = −b(k + α) and b(β + k) = ±b(β − k),

for some α, β ∈ K . Then for any nonnegative integer m, we have

[(k + γ )2m] ∈
〈
[(k + γ )2i] : 0 ≤ 2i < deg a(k)

〉
and

[(k + γ )2m+1] ∈
〈
[(k + γ )2i+1] : 0 ≤ 2i + 1 < deg a(k)

〉
,

where

γ = −β + α − 1

2
. (3.1)

Proof. We only prove the case of b(β +k) = b(β −k). The case of b(β +k) = −b(β −k) can be proved 
in a similar way. By Lemma 3.1, we may assume that

b(k) = br(k − β)r + br−2(k − β)r−2 + · · · + b0,

where r = deg a(k) = deg b(k) is even and br, br−2, . . . , b0 ∈ K are the coefficients.
Since (a(k), b(k)) is not degenerated, taking

x(k) = xs(k) = −1

2

(
k + γ − 1

2

)s

, s ∈N (3.2)

in Lemma 2.2, we derive that

ps(k) = a(k)xs(k + 1) − b(k − 1)xs(k) (3.3)

is a polynomial of degree s + r. More explicitly, we have

ps(k) = 1

2

(
b(k + α)

(
k + γ + 1

2

)s

+ b(k − 1)

(
k + γ − 1

2

)s)

is a polynomial with leading term brks+r .
Notice that

ps(−γ + k) = 1

2

(
b(k + α − γ )

(
k + 1

2

)s

+ b(k − γ − 1)

(
k − 1

2

)s)
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and

ps(−γ − k) = 1

2

(
b(−k + α − γ )

(
−k + 1

2

)s

+ b(−k − γ − 1)

(
−k − 1

2

)s)

= (−1)s

2

(
b(−k + α − γ )

(
k − 1

2

)s

+ b(−k − γ − 1)

(
k + 1

2

)s)
.

Since b(β + k) = b(β − k), i.e., b(k) = b(2β − k), we deduce that

ps(−γ − k)

= (−1)s

2

(
b(2β + k − α + γ )

(
k − 1

2

)s

+ b(2β + k + γ + 1)

(
k + 1

2

)s)
.

By the relation (3.1), we derive that

ps(−γ − k) = (−1)s ps(−γ + k).

Suppose that p(k) is a linear combination of the even powers of (k + γ ) and deg p(k) ≥ r. By 
Lemma 3.1, we have p(−γ − k) = p(−γ + k) and thus

p′(k) = p(k) − lc p(k)

br
· pdeg p(k)−r(k)

also satisfies p′(−γ − k) = p′(−γ + k) since deg p(k) and r are both even. It is clear that p(k) ∈
[p′(k)] and the degree of p′(k) is less than the degree of p(k). Continuing this reduction process, we 
finally derive that p(k) ∈ [p̃(k)] for some polynomial p̃(k) with degree < r and satisfying p̃(−γ −k) =
p̃(−γ + k). Therefore,

[p(k)] ∈ 〈[(k + γ )2i] : 0 ≤ 2i < r〉.
Suppose that p(k) is a linear combination of the odd powers of (k + γ ) and deg p(k) ≥ r. Then we 

have p(−γ − k) = −p(−γ + k) and thus

p′(k) = p(k) − lc p(k)

br
· pdeg p(k)−r(k)

also satisfies p′(−γ − k) = −p′(−γ + k). Continuing this reduction process, we finally derive that

[p(k)] ∈ 〈[(k + γ )2i+1] : 0 ≤ 2i + 1 < r〉.
This completes the proof. �

We may further require to express [(k + γ )m] as an integral linear combination of [(k + γ )i], 0 ≤
i < r when b(k) = (k + 1)r .

Theorem 3.3. Let

tk = (−1)k
(

(α)k

k!
)r

,

where r is a positive integer and α is a rational number with denominator D. Then for any positive integer m, 
there exist integers a0, . . . , ar−1 and a polynomial x(k) ∈Z[k] such that

(2Dk + Dα)mtk =
r−1∑
i=0

ai(2Dk + Dα)itk + �k
(
2r−1(Dk)r x(2Dk)tk

)
.

Moreover, ai = 0 if i �≡ m (mod 2).
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Proof. We have

tk+1

tk
= −(k + α)r

(k + 1)r
.

Let

a(k) = −(k + α)r and b(k) = (k + 1)r .

We see that it is the case of β = −1 and γ = α/2 of Theorem 3.2. From (2.1), we derive that

�k(k
r xs(k)tk) = ps(k)tk, (3.4)

where xs(k) and ps(k) are given by (3.2) and (3.3) respectively. Multiplying (2D)s+r on both sides, we 
obtain

�k(2r−1(Dk)r x̃s(2Dk)tk) = p̃s(k
′)tk, (3.5)

where k′ = 2Dk + Dα,

x̃s(k) = −(k + Dα − D)s, (3.6)

and

p̃s(k) = 1

2

(
(k + Dα)r (k + D)s + (k − Dα)r (k − D)s) . (3.7)

Notice that x̃s(k), p̃s(k) ∈ Z[k] and p̃s(k) is a monic polynomial of degree s + r. Moreover, p̃s(k) con-
tains only even powers of k or only odd powers of k. Using p̃s(k) to do the reduction (2.5), we derive 
that there exist integers cm, cm−2, . . . such that

p(k) = km − cm p̃m−r(k) − cm−2 p̃m−r−2(k) − · · ·
becomes a polynomial of degree less than r. Clearly, p(k) ∈ Z[k]. Replacing k by k′ and multiplying 
tk , we derive that

(k′)mtk = p(k′)tk + �k(2r−1(Dk)r(cmx̃m−r(2Dk) + cm−2x̃m−r−2(2Dk) + · · · )tk).

Noting that p(k) contains only the monomials of degree ≡ m (mod 2), we complete the proof. �
As an application, we confirm Conjecture 6 of Liu (2019).

Theorem 3.4. Let

Sm =
p−1

2∑
k=0

(−1)k(4k + 1)m
(

(1/2)k

(1)k

)3

.

For any positive odd integer m, there exist integers am and cm such that

Sm ≡ am

(
p(−1)

p−1
2 + p3 E p−3

)
+ p3cm (mod p4)

holds for any prime p ≥ 5.

Proof. Taking r = 3 and α = 1/2 in Theorem 3.3, there exists an integer am and a polynomial qm(k) ∈
Z[k] such that

(4k + 1)mtk − am(4k + 1)tk = �k(32k3qm(4k)tk),

where tk = (−1)k( 1
2 )3

k/(1)3
k . Summing over k from 0 to p−1

2 , we derive that
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Sm − am S1 = 32ω3qm(4ω)(−1)ω
(

(1/2)ω

(1)ω

)3

,

where ω = p+1
2 . Noting that

(1/2)ω

(1)ω
= p

1

p + 1

p−1
2∏

i=1

2i − 1

2i

and

1

p + 1

p−1
2∏

i=1

2i − 1

2i
= 1

p + 1

p−1
2∏

i=1

p − 2i

2i
≡ (−1)

p−1
2 (mod p),

we have(
(1/2)ω

(1)ω

)3

≡ p3(−1)
p−1

2 (mod p4).

Hence

Sm − am S1 ≡ −32p3ω3qm(4ω) (mod p4)

Let cm = −4qm(2). We then have

Sm ≡ am S1 + p3cm (mod p4).

Sun (2012) proved that for any prime p ≥ 5,

S1 ≡ (−1)
p−1

2 p + p3 E p−3 (mod p4).

Therefore,

Sm ≡ am

(
p(−1)

p−1
2 + p3 E p−3

)
+ p3cm (mod p4). �

Remark 1. The coefficient am and the polynomial qm(k) can be computed by the extended Zeilberger’s 
algorithm (Chen et al., 2012).

As pointed by one of the referees, Swisher (2015) showed that for any prime p ≥ 5,

bp−1
a∑

k=0

(2ak + 1)(−1)k (1/a)3
k

(1)3
k

≡ (−1)
bp−1

a bp (mod p3),

where a ∈ {2, 3, 4} and

b =
{

1, p ≡ 1 (mod a),

a − 1, p ≡ −1 (mod a).

By the same discussion as in the proof of Theorem 3.4, we derive that

Theorem 3.5. Let a ∈ {2, 3, 4}. For each odd integer m, there exists an integer am such that for any prime p ≥ 5
with p ≡ ±1 (mod a),

bp−1
a∑

(2ak + 1)m(−1)k (1/a)3
k

(1)3
k

≡ am(−1)
bp−1

a bp (mod p3),
k=0
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where

b =
{

1, if p ≡ 1 (mod a),

a − 1, if p ≡ −1 (mod a).

4. The case when a(k) = b(k + α)

We first give a criterion on the degeneration of (a(k), b(k)).

Lemma 4.1. Let a(k), b(k) ∈ K [k] such that a(k) = b(k + α). Suppose that −(α + 1) deg a(k) /∈ N . Then 
(a(k), b(k)) is not degenerated.

Proof. Let r = deg a(k) = deg b(k) and

u(k) = a(k) − b(k − 1) = b(k + α) − b(k − 1).

It is clear that the coefficient of kr in u(k) is 0 and the coefficient of kr−1 in u(k) is lc b(k) · (α + 1)r. 
Since (α + 1)r �= 0, we derive that deg u(k) = r − 1. Thus,

− lc u(k)/ lc a(k) = − lc u(k)/ lc b(k) = −(α + 1)r.

Since −(α + 1)r /∈N , the pair (a(k), b(k)) is not degenerated. �
When a(k) is a shift of b(k), we have a result similar to Theorem 3.2.

Theorem 4.2. Let a(k), b(k) ∈ K [k] such that

a(k) = b(k + α) and b(β + k) = ±b(β − k),

for some α, β ∈ K . Assume further that −(α + 1) deg a(k) /∈N . Then for any nonnegative integer m, we have

[(k + γ )2m] ∈
〈
[(k + γ )2i] : 0 ≤ 2i < deg a(k) − 1

〉
and

[(k + γ )2m+1] ∈
〈
[(k + γ )2i+1] : 0 ≤ 2i + 1 < deg a(k) − 1

〉
,

where

γ = −β + α − 1

2
.

Proof. The proof is parallel to the proof of Theorem 3.2. Instead of (3.2), we take

x(k) = xs(k) =
(

k + γ − 1

2

)s

in Lemma 2.2. By Lemma 4.1, (a(k), b(k)) is not degenerated and

deg(a(k) − b(k − 1)) = deg a(k) − 1.

Hence the polynomial

ps(k) = a(k)xs(k + 1) − b(k − 1)xs(k)

satisfies
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deg ps(k) = s + deg a(k) − 1.

Moreover, we have

ps(−γ − k) =
⎧⎨
⎩

(−1)s+1 ps(−γ + k), if b(β + k) = b(β − k),

(−1)s ps(−γ + k), if b(β + k) = −b(β − k),

so that the reduction process maintains the symmetric property. Therefore, the reduction process 
continues until the degree is less than deg a(k) − 1. �

Similar to Theorem 3.3, we have the following result.

Theorem 4.3. Let

tk =
(

(α)k

k!
)r

,

where r is a positive integer and α is a rational number with denominator D. Suppose that −αr /∈N . Then for 
any positive integer m, there exist integers a0, . . . , ar−2 and a polynomial x(k) ∈Z[k] such that

(2Dk + Dα)mtk = 1

Cm

r−2∑
i=0

ai(2Dk + Dα)itk + 1

Cm
�k

(
2r−1(Dk)r x(2Dk)tk

)
,

where

Cm =
∏

0≤2i≤m−r+1

((αr + m − r + 1 − 2i) · D).

Moreover, ai = 0 if i �≡ m (mod 2).

Proof. The proof is parallel to the proof of Theorem 3.3. Instead of (3.6) and (3.7), we take

x̃s(k) = (k + Dα − D)s (4.1)

and

p̃s(k) = 1

2
((k + Dα)r (k + D)s − (k − Dα)r (k − D)s), (4.2)

so that (3.5) still holds. It is clear that x̃s(k), p̃s(k) ∈ Z[k]. But in this case, p̃s(k) is not monic. The 
leading term of p̃s(k) is

(αr + s)D · ks+r−1.

Now let us consider the reduction process. Let p(k) ∈ Z[k] be a polynomial of degree � ≥ r − 1. 
Assume further that p(k) contains only even powers of k or only odd powers of k. Setting

p′(k) = lc p̃�−r+1(k) · p(k) − lc p(k) · p̃�−r+1(k)

= (αr + � − r + 1)D · p(k) − lc p(k) · p̃�−r+1(k),

we see that p′(k) ∈ Z[k] and deg p′(k) < �. Since p̃�−r+1(k) contains only even powers of k or only 
odd powers of k, so does p′(k). Therefore, deg p′(k) ≤ � − 2.

Continuing this reduction process until the degree of the resulting polynomial is less than r − 1, 
we finally obtain that there exist integers cm, cm−2, . . . such that

Cmkm − cm p̃m−r+1(k) − cm−2 p̃m−r−1(k) − · · · ,
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is a polynomial of degree less than r − 1 and with integral coefficients, where Cm is the product of 
the leading coefficients of p̃m−r+1(k), p̃m−r−1(k), . . .

Cm =
∏

0≤2i≤m−r+1

((αr + m − r + 1 − 2i)D) ,

as desired. �
For the special case of tk = (1/2)4

k/(1)4
k , we may further reduce the factor Cm .

Lemma 4.4. Let m be a positive integer and

tk = (1/2)4
k

(1)4
k

.

• If m is odd, then there exists an integer c and a polynomial x(k) ∈Z[k] such that

(4k + 1)mtk = c

C ′
m

(4k + 1)tk + 1

C ′
m

�k

(
32k4x(4k)tk

)
,

where C ′
m = (m−1

2 )!.
• If m is even, then there exist integers c, c′ and a polynomial x(k) ∈Z[k] such that

(4k + 1)mtk = 1

C ′
m

(c + (4k + 1)2c′)tk + 1

C ′
m

�k

(
64k4x(4k)tk

)
,

where C ′
m = (m − 1)!!.

Proof. This is the special case of Theorem 4.3 for α = 1/2 and r = 4. Therefore, D = 2 and αr −r +1 =
−1.

We need only to show that the coefficients of p̃s(k) given by (4.2) are divisible by 2 when s is 
odd and is divisible by 4 when s is even. Then we may replace x̃s(k) given by (4.1) by x̃s(k)/2 and 
x̃s(k)/4, respectively, so that the leading coefficient of p̃s(k) is reduced. Correspondingly, the product 
Cm of the leading coefficients becomes∏

0≤2i≤m−3

1

2
lc p̃m−3−2i(k) =

∏
0≤2i≤m−3

(m − 1 − 2i) = (m − 1)!!, m even,

and ∏
0≤2i≤m−3

1

4
lc p̃m−3−2i(k) =

∏
0≤2i≤m−3

m − 1 − 2i

2
=

(
m − 1

2

)
!, m odd.

Notice that

p̃s(k) = 1

2
((k + 1)4 (k + 2)s − (k − 1)4 (k − 2)s).

The coefficient of k j is

1 − (−1)s− j

2

∑
0≤�≤4, 0≤ j−�≤s

(
4

�

)(
s

j − �

)
2s− j+�.

If j − � < s, the corresponding summand is divisible by 2. If j − � = s and � is even, then (−1)s− j = 1
and the coefficient is 0. Otherwise, � = 1 or � = 3, and thus 4 | (4

�

)
. Therefore, the coefficient must be 

divisible by 2.
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Now consider the case of s being even. If j − � < s − 1, the corresponding summand is divisible 
by 4. Otherwise j − � = s or j − � = s − 1. We have seen that if j − � = s, then the coefficient is 
divisible by 4. If j − � = s − 1. Then(

s

j − �

)
= s and 2s− j+� = 2.

Thus the summand is also divisible by 4. �
Example 4.1. Consider the case of m = 11. We have

(4k + 1)11tk + 10515(4k + 1)tk = �k(32k4 p(k)tk)

where

p(k) = 1

5
(4k − 1)8 − 249

20
(4k − 1)6 + 20207

60
(4k − 1)4 − 89909

20
(4k − 1)2 + 524029

20
.

As an application, we obtain the following congruences.

Theorem 4.5. Let m be a positive odd integer and μ = (m − 1)/2. Denote

Sm =
p−1

2∑
k=0

(4k + 1)m
(

(1/2)k

(1)k

)4

.

Then there exists an integer am such that for each prime p > μ,

Sm ≡ am

μ! p (mod p4).

Proof. By Lemma 4.4, there exists an integer am and a polynomial qm(k) ∈Z[k] such that

(4k + 1)mtk − am

μ! (4k + 1)tk = 1

μ!�k

(
32k4qm(4k)tk

)
,

where tk =
(

(1/2)k
(1)k

)4
. Summing over k from 0 to (p − 1)/2, we obtain

Sm − am

μ! S1 = 32ω4 qm(4ω)

μ!
(

(1/2)ω

(1)ω

)4

,

where ω = (p + 1)/2. When p > μ, 1/μ! is a p-adic integer and(
(1/2)ω

(1)ω

)4

≡ 0 (mod p4).

Therefore,

Sm ≡ am

μ! S1 (mod p4).

It is shown by Long (2011) that

S1 ≡ p (mod p4),

completing the proof. �
The integer am and the polynomial qm(k) can be computed by the extended Zeilberger’s algorithm.
By checking the initial values, we propose the following conjecture.

Conjecture 4.6. For any positive odd integer m, the coefficient am/(m−1
2 )! is an integer.
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