Investigating the Sahi Property

Yukun Yao and Doron ZEILBERGER

In [S], Lemma 16, it is proved, using ad-hoc, human methods, that if $\alpha, \beta, \gamma, \delta$, are non-negative and $\alpha + \beta + \gamma + \delta = 1$ and $\alpha \delta \ge \beta \gamma$, then the following formal power series

$$1 - (1 - a)^{\delta} (1 - a - b - c)^{\gamma} (1 - a - b - d)^{\beta} (1 - a - b - c - d - e)^{\alpha}$$

is a formal power series in the variables a, b, c, d, e with **non-negative** coefficients.

For now, for the sake of simplicity, let's take $\alpha = \beta = \gamma = \delta = \frac{1}{4}$, so we have, thanks to Sahi the fact that

$$1 - ((1-a)(1-a-b-c)(1-a-b-d)(1-a-b-c-d-e))^{\frac{1}{4}}$$

is a formal power series in the variables a, b, c, d, e with **non-negative** coefficients.

Let x_1, \ldots, x_n be formal variables and let $S = \{\sum_{j=1}^n c_{ij}x_i, i = 1..m\}$ be a set of linear combinations of the variables. Let α be a number, the pair (S, α) has the (n, m)-Sahi property if the formal power series

$$1 - \prod_{1}^{m} (1 - \sum_{j=1}^{n} c_{ij} x_i)^{\alpha}$$

is a formal power series with **non-negative** coefficients.

So Sahi's Lemma 16 says that the pair $(\{x_1, x_1 + x_2 + x_3, x_1 + x_2 + x_4, x_1 + x_2 + x_3 + x_4 + x_5\}, \frac{1}{4})$ has the (5, 4)-Sahi property.

Big Challenge For given m and n find, experimentally, and if possible rigorously, all pairs (S, α) with the Sahi property.

We have to start with the first not completely trivial case, n = 1 and m = 2.

using the Maple program SahiProperty.txt it is seen that $\{x, x/4\}, \frac{7}{10}$ does not have the Sahi property, but $\{x, x/4\}, \frac{3}{5}$ does.

First mini-challenge

Find all pairs $(c\alpha)$ such that the one-variable formal power series

$$1 - ((1-x)(1-cx))^{\alpha}$$
,

is a formal power series with non-negative coefficients.

References [S] Siddhartha Sahi, Higher correlation inequalities, Combinatorica 28 (2008), 209-227.

Yukun Yao, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. Email: yao at math dot rutgers dot edu .

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. Email: DoronZeil at gmail dot com .