Finite Versions of Szemerédi's Theorem on Arithmetical Progressions

Paul RAFF ${ }^{1}$ and Doron ZEILBERGER ${ }^{1}$

Introduction

One of the crowning achievements of combinatorics and number theory ([S]) is
Szemerédi's Theorem: For any positive integer k, and any positive integer n, let $S_{k}(n)$ be the size of the largest subset of $[1, n]$ that avoids arithmetical progressions of size k. Then

$$
\lim _{n \rightarrow \infty} \frac{S_{k}(n)}{n}=0
$$

The exact rate of convergence is not known, but quite a few Fields-medalists (Bourgain, Gowers, Tao) are trying to make it quantitative, but their results are (probably) far from sharp.

In this article, we offer yet-another-approach, that we believe does have the potential, eventually, to tackle the "deep questions", and at any rate, is of independent interest. Let's study "finite" versions of Szemerédi's theorem.

Fix k (the size of the arithmetic progression) and d, a positive integer, and let $f_{k, d}(n)$ be the cardinality of the largest subset of $\{1,2, \ldots, n\}$ that avoids arithmetic progressions of size k whose difference is $\leq d$. In other words $f_{k, d}(n)$ is the size of largest subset of $\{1,2, \ldots, n\}$, that does not contain any subset of the form

$$
\{a, a+j, a+2 j, \ldots, a+(k-1) j\}
$$

and $j \leq d$. We will see below that $f_{k, d}(n)$ is eventually periodic, in the sense that there exist a period $P=P_{k, d}$ and an integer $Q=Q_{k, d}$ such that, starting at a $N_{k, d}$

$$
f_{k, d}(P m+i)=Q m+\alpha_{i} \quad, \quad i=1 \ldots P
$$

with certain α_{i} with $0 \leq \alpha_{i} \leq Q$. We will present fully implemented algorithms to conjecture $P_{k, d}, Q_{k, d}$, and the α_{i} 's, and then prove that the conjecture is true (completely automatically). In particular, we would have

$$
C_{k, d}:=\lim _{n \rightarrow \infty} \frac{f_{k, d}(n)}{n}=\frac{Q_{k, d}}{P_{k, d}} .
$$

Another way of stating Szemerédi's theorem is

$$
\lim _{d \rightarrow \infty} C_{k, d}=0
$$

[^0]Hopefully more extensive computations would give, for specific $k=3,4, \ldots$ (and perhaps eventually for general k) a trend, that may give experimental insight about the rate of convergence of $C_{k, d}$. We also believe that our approach may suggest a novel rigorous approach that may eventually yield rigorous lower and upper bounds on $C_{k, d}$, by studying, in general terms, the appropriate system of equations defined below, that determine $P_{k, d}, Q_{k, d}$, and hence $C_{k, d}$. This, in turn, may enable to improve the current lower and upper bounds for the behaviour of $S_{k}(n)$ itself.

References

[S] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 199-245.

[^0]: 1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. [praff,zeilberg] at math dot rutgers dot edu,
 http://www.math.rutgers.edu/~ [praff,zeilberg]. First version: June 3, 2009. Accompanied by Maple package ENDRE and Mathematica package downloadable from the authors' websites. Supported in part by the NSF.

