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Dedicated to Two Combinatorial Giants: Gian-Carlo Rota (April 27, 1932- April 18,
1999) ZTz”L and Richard Stanley (b. June 23, 1944) ShLIT”A on their 75th and 63rd birthdays,
respectively.

Compositions and Partitions

A composition with n parts is a vector of non-negative integers (a1, . . . , an). Defining the weight
of such a composition to be xa1

1 . . . xann , we easily get that the weight-enumerator, alias generating
function, of all compositions into n parts is:∑

a1≥0,...,an≥0
xa1

1 · · ·xann =

( ∞∑
a1=0

xa1
1

)
· · ·

( ∞∑
an=0

xann

)
=

1
1− x1

· · · 1
1− xn

.

Leaving the generating function in terms of x1, . . . , xn is really displaying the whole (infinite!) set
of compositions into n parts. Setting all the xi’s to be q we get that the generating function of
cn(m) := number of compositions of m into exactly n non-negative parts,

∑∞
m=0 cn(m)qm, equals

(1− q)−n.

A partition with n parts is an integer-vector (a1, . . . , an) with 0 ≤ a1 ≤ a2 ≤ . . . ≤ an. Defining
the weight of such a partition to be xa1

1 . . . xann , we easily get that the weight-enumerator, alias
generating function, of all partitions into n parts is:∑

0≤a1≤a2≤...≤an

xa1
1 · · ·xann =

∑
0≤a1≤a2≤...≤an

(x1 · · ·xn)a1(x2 · · ·xn)a2−a1(x3 · · ·xn)a3−a2 · · ·xann =

=

( ∞∑
a1=0

(x1 · · ·xn)a1

)( ∞∑
a2−a1=0

(x2 · · ·xn)a2−a1

)( ∞∑
a3−a2=0

(x3 · · ·xn)a3−a2

)
· · ·

( ∞∑
an=0

(xn)an
)

=
1

1− x1 · · ·xn
· 1

1− x2 · · ·xn
· · · 1

1− xn
=

1
(1− x1 · · ·xn)(1− x2 · · ·xn) · · · (1− xn)

.

Leaving the generating function in terms of x1, . . . , xn is really displaying the whole (infinite!)
set of partitions into n parts. Setting all the xi’s to be q we get that the generating function of
pn(m) := number of partitions of m into exactly n non-negative parts,

∑∞
m=0 pn(m)qm, equals

1/((1− q)(1− q2) . . . (1− qn)).
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Stanley’s P-Partitions

Compositions and Partitions are the two extremes of non-negative integer arrays, where in the
former there is no order at all imposed, while in the latter there is a total order.

In 1972, Richard Stanley[S1], standing on the shoulders of Percy MacMahon[M] and Don Knuth[K],
defined a whole new class of objects that bridges between these two extremes. He coined them P-
Partitions. They concern partially-ordered sets, called posets for short.

Recall that a poset P is a finite set of vertices, that we will name 1, 2, . . . , n, together with a partial-
order ≤P , satisfying the axioms x ≤P y and y ≤P x implies x = y and x ≤P y and y ≤P z

implies x ≤P z. The labeling is called natural if x ≤P y implies x ≤ y.

We will represent a naturally-labeled poset with n vertices by a sequence of n sets [S1, . . . , Sn]
where Si is the set of j ∈ P such that j < i and j ≤P i. Of course S1 = ∅ always. For example,
for the empty order (yielding compositions) we have P = [∅, ∅, . . . , ∅], for the total order (yielding
partitions) we have P = [∅, {1}, {1, 2}, . . . , {1, 2, . . . , n−1}], for the “diamond” (or two-dimensional
unit cube) we have P = [∅, {1}, {1}, {1, 2, 3}] while for the three-dimensional unit cube, we have

P = [∅, {1}, {1}, {1}, {2, 3}, {1, 3}, {1, 2}, {1, 2, 3, 4, 5, 6, 7}] .

Given a poset P on {1, . . . , n}, a P-partition is a vector of non-negative integers (a1, . . . , an) such
that i ≤P j implies ai ≤ aj . For example, if P = [∅, {1}, {1}, {1, 2, 3}], then (0, 2, 4, 5) and
(0, 4, 2, 5) are both P-partitions but (0, 4, 2, 3) is not.

Once again we define the weight of a P-partition (a1, . . . , an) to be xa1
1 · · ·xann , and given any

naturally-labeled poset P , we would like to compute the weight-enumerator, alias generating-
function, of all its P-partitions.

Richard Stanley[S1] (nicely described in sec. 4.4 of the classic [S2]) reasons as follows. 2

Let Sn be the set of permutations on {1, 2, . . . , n}.

For any permutation π we define the set Aπ of vectors of non-negative integers (a1, . . . , an) such
that aπ1 ≤ aπ2 ≤ . . . ≤ aπn and in addition aπi < aπi+1 whenever πi > πi+1.

It is easy to see that the set of non-negative integer vectors of length n, Nn, can be partitioned
into a disjoint union

Nn =
⋃
π∈Sn

Aπ .

A permutation π = π1 . . . πn is compatible with P if i < j and i ≤P j implies that i lies to the left
of j in π.

2 Note that Stanley defines P-partitions to be order-reversing, while we require that they’ll be order-preserving, so

to pass from his convention to ours one has to reverse the poset.
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For example, for P = [∅, {1}, {1}, {1, 2, 3}], there are only two compatible permutations: 1234 and
1324.

The weight-enumerator of each individual Aπ is easy to compute. It is∑
(xπ1)aπ1 · · · (xπn)aπn

where the sum ranges over all (a1, . . . , an) in Nn such that aπ1 ≤ aπ2 ≤ . . . ≤ aπn and whenever
πi > πi+1, aπi < aπi+1 . These are easily summable geometrical series that the computer can do by
itself:

hπ(x1, . . . , xn) :=
Mπ(x1, . . . , xn)

(1− xπ1 · · ·xπn)(1− xπ2 · · ·xπn) · · · (1− xπn)
,

for some easily-computable monomial Mπ(x1, . . . , xn).

Clearly the set of P-partitions is the disjoint union of the Aπ’s for the π compatible with P , so the
weight-enumerator of all P -partitions is simply the sum of the hπ’s for the π’s that are compatible
with P .

Once again the generating function FP (x1, . . . , xn) contains all the information about the P-
partitions of P , since the set of monomials in its Maclaurin expansion is in an obvious one-to-one
correspondence with the set of P-partitions of P .

If one is only interested in the number of P -partitions of m, then it is the coeff. of qm in the
uni-variate rational function fP (q) := FP (q, q, q, . . . , q) obtained by setting all the xi’s to q.

The Exponential Curse

Stanley’s approach works well for small posets. But once the number of vertices exceeds 10, the
set of compatible permutations is too large, and it becomes hopeless to compute FP and hence
fP directly. But, in mathematics as well as in life, if things get too complicated, it is sometimes
possible to decompose them into smaller components, by finding some operation of gluing or
grafting.

Grafting

Let P be a poset , with n vertices, naturally labeled {1, 2, . . . , n}, and let Q be another poset, with
m vertices, naturally labeled {1, 2, . . . ,m}. Suppose that the subposet of P induced by its last k
vertices is isomorphic to the subposet of Q induced by its first k vertices. Then we can form a new
poset, the k-graft of P and Q, let’s call it R and denote it by g(P,Q; k), by first promoting the
labels of Q by n− k, so that its labels will be {n− k + 1, . . . , n− k +m} rather than the original
{1, . . . ,m}, and then identifying the last k vertices of P with the first k vertices of Q.

An example of Grafting

If P = [∅, {1}, {1}, {1, 2, 3}, {1, 2, 3}] and Q = [∅, {1}, {1}, {1, 2, 3}, {1, 2, 3}, {1, 2, 3, 4, 5}], and k =
3, the induced subposet of the first 3 vertices of Q is [∅, {1}, {1}], while that of the last 3 vertices

3



of P is [{1}, {1, 2, 3}, {1, 2, 3}] with {1, 2} removed, that gives [∅, {3}, {3}], and “normalizing”, we
get [∅, {1}, {1}]. The reader can easily convince itself that

g(P,Q; 3) = [∅, {1}, {1}, {1, 2, 3}, {1, 2, 3}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5, 6, 7}] .

If you know the generating functions for P-partitions of P and Q, can you compute
that of Their Graft?

Not directly! But let’s try and ponder how a typical P-partition of the graft R looks like. We can
split the decision of how to construct it into two phases. First we construct a P-partition of P , and
then we look at the last k vertices of P and think how to extend them to the remaining m− k
vertices of Q. So we need a more general notion than the generating function for P-partition, that
weight-enumerates those P-partitions whose first k vertices have already been assigned values.

For the sake of simplicity, let’s first assume that the grafting region, of the common k vertices (the
last of P and the first of Q), are totally-ordered. From the point of view of Q, its first k vertices
are already committed, and it remains to decide the fate of the remaining m − k vertices. So for
each weakly-increasing vector of integers (a1, . . . , ak) we need

SQ(a1, . . . , ak)(xk+1, . . . , xm) =
∑

q=(a1,...,ak,qk+1,...,qm)

xk+1
qk+1xk+2

qk+2 · · ·xmqm ,

where the sum is over all P-partitions q = (q1, . . . , qm), of Q, for which q1 = a1, . . . , qk = ak.
And surprise! The computer can compute it just as easily as it computed FQ, and the answer will
be a rational function whose denominator is a polynomial in xk+1, . . . , xm but its numerator is a
polynomial in xk+1, . . . , xm as well as in ‘symbolic’ monomials formed from them.

Note that the (a1, . . . , ak) do not have to be numerical but can stay symbolic. It (a1, . . . , ak) is a
symbolic weakly-increasing sequence of non-negative integers, then there is an explicit formula for
SQ(a1, . . . , ak)(xk+1, . . . , xm), that the computer can easily find by summing (iterated) symbolic
infinite geometrical series. Combining, we have

FR(x1, . . . , xm+n−k) =
∑

0≤a1≤a2≤...≤ak

∑
(p1,...,pn−k,a1,...,ak) is a P−Partition of P

xp1
1 · · ·x

pn−k
n−k x

a1
n−k+1 · · ·x

ak
n · SQ(a1, . . . , ak)(xn+1, . . . , xn+m−k) . (GianCarlo)

Gian-Carlo Rota’s Umbral Miracle Comes to the Rescue

Gian-Carlo Rota’s Umbral Calculus [RR] was already exploited in [Z1-5]. Here we will describe
how to use it for computing generating functions for P-partitions. We refer the readers to [Z1] for
background about Umbral operators.

Going back to Eq. (GianCarlo), it is now natural to define an operator UQ, on the ring of formal
power series of (y1, . . . , yk) by defining it on monomials by:

UQ(ya1
1 · · · y

ak
k ) := SQ(a1, . . . , ak)(xn+1, . . . , xn+m−k) ,
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and extend it by linearity. It turns out that UQ is an Umbral operator, i.e. of the form

f(y1, . . . , yk)→
∑
j∈J

Rj(xn+1, . . . , xm+m−k)f(m(j)
1 , . . . ,m

(j)
k ) ,

where J is a certain finite index-set, Rj are rational functions of their arguments, and m(j)
1 , . . . ,m

(j)
k

are some specific monomials in (xn+1, . . . , xm+n−k). The beauty is that the computer can figure
out this rather abstract object, an Umbral operator, all by itself, using a certain data structure
described in [Z1]. Going back to (GianCarlo), we get, by the linearity of UQ

FR(x1, . . . , xm+n−k) =
∑

0≤a1≤a2≤...≤ak

∑
(p1,...,pn−k,a1,...,ak) is a P−Partition of P

xp1
1 · · ·x

pn−k
n−k x

a1
n−k+1 · · ·x

ak
n UQ(ya1

1 · · · , y
ak
k )

= UQ

 ∑
0≤a1≤a2≤...≤ak

∑
(p1,...,pn−k,a1,...,ak) is a P−Partition of P

xp1
1 · · ·x

pn−k
n−k (y1xn−k+1)a1 · · · (ykxn)ak


= UQ [FP (x1, . . . , xn−k , y1xn−k+1 , . . . , ykxn) ] .

So in order to compute the generating function for P -partitions of the k-graft of P and Q (assuming
for now that the k common vertices are totally ordered), we need to ask P for its FP , but from Q we
need more, namely, the Umbral operator UQ, with input variables y1, . . . , yk, and output variables
xk+1, . . . , xm, that we later have to shift (in order to accommodate the re-labeling implied by
the graft) to xn+1, . . . , xn+m−k. Fortunately, computer algebra systems (Maple in our case) can
compute this operator almost as easily as computing the rational function FQ.

What if the Interface is Not Totally Ordered?

Then one must find all the linear extensions of the induced common poset of P ’s last k vertices
and Q’s first k vertices. First, we must replace FP by a vector of rational functions, each of whose
components correspond to one of the linear extensions of the intersection. Then for each of these
linear extensions, we must find its own Umbral operator, getting a vector of Umbral operators.
Then, in order to get FR, we take the “dot product” so-to-speak. If Q will be later grafted to yet
another poset, as part of a chain (see below), then we must also look at all the possible “output
states”, getting an Umbral matrix connecting the input states to the output states. Once again
the computer does if all by itself. For the technical/formal details, we refer the reader to the Maple
package RotaStanley, where this is implemented by procedure PPumbraMatrix.

Chains of Grafted Posets

Every poset P can be naturally described (usually in numerous ways) as a chain of elementary
posets [P1, P2, . . . , PM ] together with a sequence of positive integers [k1, . . . , kM−1] that describes
the interfaces: the last k1 vertices of P1 are identified with the first k2 vertices of P2, . . ., the last
kM−1 vertices of PM−1 are identified with the first kM−1 vertices of PM . Of course we assume the
compatibility conditions. We will denote the resulting poset by

G([P1, P2, . . . , PM ], [k1, . . . , kM−1]) .
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In the case of a ranked poset, it is especially transparent, since each of the component posets
consists of two successive ranks.

In order to compute the generating function for enumerating P-partitions ofG([P1, P2, . . . , PM ], [k1, . . . , kM−1]),
we view it as iterated grafts, and iterate what we did before for the graft of two posets.

For large posets P , it would be hopeless to compute FP directly. But as long as the “intersection-
sizes” ki’s do not get too big, we can compute, with the Umbral method, the generating functions
for enumerating very large posets. In other words, we can handle very tall posets, as long as they
are skinny enough.

Enumerating Bounded P -Partitions

To get the generating function for P -partitions all of whose parts are ≤ M , say, which now is
a polynomial rather than a rational function, simply graft one last “claw” poset to the maximal
vertices of P , and calling this new vertex L, look at the coeff. of xML .

Enumerating Families of P -partitions

So far we outlined an algorithm for computing generating functions for specific posets. But, often
we are interested in one-parameter or several-parameter families. For example, MacMahon’s box
theorem about plane partitions is about the P -partitions of the m × n rectangle with symbolic m
and n. For every specific (not too large), n, RotaStanley can find FP for rather large m, but what
about symbolic m and n.

Now, MacMahon was extremely lucky that he got a ‘nice’ answer in terms of m and n. Getting
something so explicit for a two-parameter family of posets is very unlikely to ever happen again,
and testifies, that in some sense, MacMahon’s result is trivial. By hindsight, it was extremely naive
of him to expect that there would be a ‘nice’ answer for solid partitions, jumping to conclusions
from the utterly trivial one-dimensional, and moderately trivial two-dimensional results.

However, with the Umbral method, one can still hope to get ‘nice’ (in a generalized sense) results
for one-parameter families of posets, namely those that are iterated-grafting of an inputted poset
P to itself.

So given a poset P , let’s assume that the subposet induced by the last k vertices is isomorphic to
the subposet induced by the first k vertices. Then define the n-th power P (n) to be

P (n) := G([P, P, P, . . . , P ], [k, k, . . . , k]) ,

where there n P ’s and n− 1 k’s.

The computer can find the self-Umbra U from the ‘input’ first k vertices to the ‘output’ last k
vertices. The catalytic variables are x1, . . . , xk, and one can finds an Umbral recurrence

Fn(q;x1, . . . , xk) = U [Fn−1(q;x1, . . . , xk)] . (UmbralRecurrence)
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This is a certain functional-recurrence equation, and if there is some conjectured expression in closed
form or any other tractable description (for example, as a solution of linear recurrence equation with
polynomial coefficients in (qn, q)), then it can be easily proved (automatically!) by verifying this
functional recurrence. Finally, to get the actual generating function, one plugs x1 = . . . = xk = 1,
getting fn(q) = Fn(q; 1, 1, . . . , 1), that has the same “niceness status” as Fn, or, if in luck, even
nicer. But even if we are not lucky, (UmbralRecurrence), is an “answer” in the Wilfian sense,
since it allows us to compute things in polynomial times, alas in O(nk+1) rather than O(n) steps,
due to the k “catalytic” variables. [See procedure UmbralRecurrenceSingle in RotaStanley] .

The Maple Package RotaStanley

All of this is implemented in our Maple package RotaStanley downloadable from the webpage of
this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/rotastanley.html ,

where one can also find some sample input and output. Readers who have Maple can generate lots
of further output on their own.

A Challange: Interfacing with MacMahon’s Omega Operator Method

If one wants to compute the generating function for a specific, random poset, with no discernible
structure, then it is probably prefarable to use the MacMahon-Andrews-Paule-Riese Omega method.

MacMahon’s Omega operator method was ingeniously resurrected and implemented by George
Andrews, Peter Paule, and Axel Riese (See [APR1] and its sequels (e.g. [APR2])), and made
orders-of-magnitude faster by Guoce Xin[X], who realized that continuous mathematics was just a
red herring that slowed things down.

But it seems that our approach is superior for families that are “powers” as described above. It
is true that in some simple cases, one can use the Omega method to do several special cases by
computer, look at the pattern, and discover, by human “ingenuity” a functional equation that, if
in luck, may be solved.

The advantage of our approach is that no humans are needed, and one can find the functional
recurrence completely automatically.

Alas, once the “atomic” poset gets larger, our naive approach, that looks at all the compatible
permutations for the atomic poset, also becomes intractable. In other words, if the atoms are
small, we can handle very large molecules built from them, but if the atoms are big, we run out of
time and memory.

But, the Omega method, that was so succesful in computing generating functions for enumerating
P-partitions, should, almost as easily, be able to automatically compute the Umbral operators of
the present approach. We are sure that combining the Umbral approach with the Omega method
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is likely to handle larger and larger posets and families, both “numerically” and symbolically. I
leave this as a challenge to the readers.
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