Proof of a Conjecture of Amitai Regev About Hook Multi-Sets

Doron ZEILBERGER ${ }^{1}$

Given an integer-partition $\lambda \vdash n$ and a box (a cell) $v=[i, j] \in \lambda$ it determines the arm length a_{v} $\left(=\lambda_{i}-j\right)$, the leg length $l_{v}\left(=\lambda_{j}^{\prime}-i\right)$, and the left length $f_{v}(=j-1)$. Fill v with a pair of numbers in two different ways:

First Filling: Fill v with $\left(a_{v}, l_{v}\right)$.
Second Filling: Fill v with $\left(a_{v}, f_{v}\right)$.
This yields the following two multi-sets of pairs:

$$
\begin{aligned}
& A_{1}(n)=\bigcup_{\lambda \vdash n}\left\{\left(a_{v}, l_{v}\right) \mid v \in \lambda\right\}, \\
& A_{2}(n)=\bigcup_{\lambda \vdash n}\left\{\left(a_{v}, f_{v}\right) \mid v \in \lambda\right\} .
\end{aligned}
$$

The purpose of this short note is to prove Amitai Regev[R]' intriguing
Conjecture: For all non-negative integers $n, A_{1}(n)=A_{2}(n)$.
As usual, $(z)_{a}:=(1-z)(1-q z) \cdots\left(1-q^{a-1} z\right)$.
The conjecture would follow from the following two lemmas.
Lemma 1: Let $M_{1}(c, d)(n)$ be the number of times the pair (c, d) shows up in $A_{1}(n)$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} M_{1}(c, d)(n) q^{n}=\frac{q^{c+d+1}}{1-q^{c+d+1}} \cdot \frac{1}{(q)_{\infty}} . \tag{1}
\end{equation*}
$$

Lemma 2: Let $M_{2}(c, d)(n)$ be the number of times the pair (c, d) shows up in $A_{2}(n)$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} M_{2}(c, d)(n) q^{n}=\frac{q^{c+d+1}}{1-q^{c+d+1}} \cdot \frac{1}{(q)_{\infty}} . \tag{2}
\end{equation*}
$$

Proof of Lemma 2: $M_{2}(c, d)(n)$ counts the number of Ferrers diagrams of n where one of the cells that has (right) arm c and left-arm d is marked. Obviously it belongs to a row of length $c+d+1$,

[^0]and each such row has exactly one such cell. Hence this is the same as counting the number of Ferrers diagrams of n where one of the rows of length $c+d+1$ is marked. We can construct such a Ferrers diagram (with any number of cells) by first drawing that row of length $c+d+1$ (weight q^{c+d+1}) then putting below it an arbitrary Ferrers diagram with largest part $\leq c+d+1$, whose generating function is $1 /\left((1-q)\left(1-q^{2}\right) \cdots\left(1-q^{c+d+1}\right)\right)$, and then placing above the abovementioned fixed row any Ferrers diagram whose smallest part is $\geq c+d+1$, whose generating function is $1 /\left(\left(1-q^{c+d+1}\right)\left(1-q^{c+d+2}\right) \cdots\right)$. Combining, we get that the generating function of such marked creatures, which is the left side of (2), is the right side of (2) \square.

Before proving Lemma 1 we have to recall certain basic facts from q-land.
Fact 1 (The q-Binomial Theorem)

$$
\frac{1}{(z)_{a+1}}=\sum_{j=0}^{\infty} \frac{(q)_{a+j}}{(q)_{a}(q)_{j}} z^{j} .
$$

(This is easily proved by induction on a).
When $a=\infty$ this simplifies to
Fact 2

$$
\frac{1}{(z)_{\infty}}=\sum_{j=0}^{\infty} \frac{z^{j}}{(q)_{j}}
$$

Fact 3: The generating function for Ferrers diagrams bounded in an m by n rectangle is $\frac{(q)_{m+n}}{(q)_{m}(q)_{n}}$. (Let's recall the proof of this elementary fact. Let the generating function be $F(m, n ; q)$. Consider the last cell of the top row. If it is occupied, the generating function of these diagrams is $q^{n} F(m-$ $1, n$) (remove the fully-occupied top row), if it is not, it is $F(m, n-1)$ (delete the empty rightmost column), getting the recurrence $F(m, n ; q)=q^{n} F(m-1, n ; q)+F(m, n-1 ; q)$. Then verify that the same recurrence is satisfied by $\frac{(q)_{m+n}}{(q)_{m}(q)_{n}}$, and check the trivial initial conditions $m=0$ and $n=0$.)

Proof of Lemma 1: The left-side of (1) is the generating function for Ferrers diagrams where one hook with arm-length c and leg-length d is marked. Let's figure out the generating function (weight-enumerator) for all such (c, d)-hook-marked Ferrers diagrams.

Suppose the corner of that hook is at cell $(i+1, j+1)$ (i.e. the $(i+1)$-row and the $(j+1)$-column). Here $0 \leq i<\infty$ and $0 \leq j<\infty$. Let's look at its anatomy. It consists of seven parts.

1. Strictly left of and above cell $(i+1, j+1)$. This is a fully occupied i by j rectangle with weight $q^{i j}$.
2. Above the arm (of length $c+1$). This is a fully occupied i by $c+1$ rectangle with weight $q^{(c+1) i}$
3. To the left of the leg (of length $d+1$). This is a fully occupied $d+1$ by j rectangle with weight $q^{(d+1) j}$.
4. The Ferrers diagram with $\leq i$ rows lying above and to the right of the arm. The generating function of this is $1 /(q)_{i}$.
5. The Ferrers diagram with $\leq j$ columns lying below and to the left of the leg. The generating function of this is $1 /(q)_{j}$.
6. The hook itself. This gives generating function q^{c+d+1}.
7. The Ferrers diagram formed inside the hook, i.e. lying below the arm and to the right of the leg. By Fact 3 its generating function is $\frac{(q)_{c+d}}{(q)_{c}(q)_{d}}$.

Combining, we see that the generating function for these (c, d)-hook-marked Ferrers diagrams is

$$
\frac{(q)_{c+d}}{(q)_{c}(q)_{d}} \cdot q^{c+d+1} \cdot q^{i j+i(c+1)+j(d+1)} \cdot \frac{1}{(q)_{i}} \cdot \frac{1}{(q)_{j}}
$$

Summing over all $0 \leq i, j<\infty$, we get that the generating function on the left of (1) equals

$$
\begin{aligned}
& \frac{(q)_{c+d}}{(q)_{c}(q)_{d}} q^{c+d+1} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} q^{i j+i(c+1)+j(d+1)} \frac{1}{(q)_{i}} \frac{1}{(q)_{j}} \\
= & \frac{(q)_{c+d}}{(q)_{c}(q)_{d}} q^{c+d+1} \sum_{i=0}^{\infty} \frac{1}{(q)_{i}} q^{i(c+1)} \sum_{j=0}^{\infty} q^{j(i+d+1)} \frac{1}{(q)_{j}} \\
= & \frac{(q)_{c+d}}{(q)_{c}(q)_{d}} q^{c+d+1} \sum_{i=0}^{\infty} \frac{1}{(q)_{i}} q^{i(c+1)} \frac{1}{\left(q^{d+i+1}\right)_{\infty}}
\end{aligned}
$$

by Fact 2 with $z=q^{d+i+1}$). This equals

$$
\begin{aligned}
& \frac{(q)_{c+d}}{(q)_{c}} q^{c+d+1} \sum_{i=0}^{\infty} q^{i(c+1)} \frac{1}{(q)_{\infty}} \frac{\left(q^{i+1}\right)_{d}}{(q)_{d}} \\
& =\frac{q^{c+d+1}}{(q)_{\infty}} \frac{(q)_{c+d}}{(q)_{c}} \sum_{i=0}^{\infty} q^{i(c+1)} \frac{(q)_{i+d}}{(q)_{d}(q)_{i}} \\
& \quad=\frac{q^{c+d+1}}{(q)_{\infty}} \frac{(q)_{c+d}}{(q)_{c}} \frac{1}{\left(q^{c+1}\right)_{d+1}}
\end{aligned}
$$

by Fact 1 with $z=q^{c+1}$. Finally, this equals

$$
=\frac{q^{c+d+1}}{(q)_{\infty}} \cdot \frac{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{c+d}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{c+d+1}\right)}=\frac{q^{c+d+1}}{(q)_{\infty}} \cdot \frac{1}{\left(1-q^{c+d+1}\right)}
$$

Reference

[R] A. Regev, private communication .

[^0]: 1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. zeilberg at math dot rutgers dot edu,
 http://www.math.rutgers.edu/~zeilberg . Sept. 13, 2009. Exclusive to the Personal Journal of Ekhad and Zeilberger and arxiv.org. Supported in part by the NSF.

