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Abstract. We represent the sums
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and the sum of the reciprocal of the summand in Dixon’s identity, each as a
product of an indefinite hypergeometric sum times a (closed form) hypergeo-
metric sequence .

In [3], Rocket proved the formula
n∑
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j + 1
, (Rockett)

for all nonnegative integers n. Since then, several authors (e.g. [1][4][5]) used differ-
ent techniques to re-derive (Rockett) and considered analogous, more complicated,
sums.

As we all know,
n∑
k=0

(
n

k

)
= 2n , (Binomial)

is the simplest example of a definite binomial coefficient sum that evaluates in
closed-form. Such sums have the form

n∑
k=0

F (n, k) = A(n) ,

where A(n) is hypergeometric (i.e. A(n+ 1)/A(n) equals P (n)/Q(n) for some poly-
nomials P (n), Q(n) of n, in other words, is a rational function of n), and F (n, k) is
bi-hypergeometric (i.e F (n+1, k)/F (n, k) and F (n, k+1)/F (n, k) are both rational
functions of R(n, k)). Other famous examples, are
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The best thing that can happen to a binomial coefficients sum is to he evaluable in
closed form, i.e. as a hypergeometric sequence. The next best thing is to be “almost
closed-form”, i.e. of the form

ClosedForm(n) ·

 n∑
j=1

h(j)

 ,

where h(j) is hypergeometric in the single variable j.
Inspired by (Rocket), that has this “almost perfect” form, and that came out

from considering the sum of the reciprocal of the simplest binomial coefficient sum
known, we searched for other cases where one starts from a well-known binomial
coefficients sum that evaluates in closed form, and looks at what happens if one
considers the sum of the reciprocal of the summand. To our great surprise and
delight, it worked for the Chu-Vandermonde summand and for the Dixon summand
(see below). To our disappointment, it didn’t work for the so-called Pfaff-Saalschutz
identity (see, e.g. [2]).
We use the WZ method([2]), and the reader is assumed to be familiar with it. In
particular we used Zeilberger’s Maple package EKHAD (procedure zeillim) accompa-
nying [2]. EKHAD is available from

http://www.math.rutgers.edu/~zeilberg/tokhniot/EKHAD .
In most applications, the summation limits are natural, i.e. the summand is well-

defined vanishes at k = −1 and k = n+ 1 (or in the case of (Dixon), at k = −n−1
and k = n + 1) so one can get a homogeneous first-order linear recurrence for the
definite sum, that leads to a closed-form solution. In the present cases, this is no
longer the case, and we only get inhomogeneous first-order linear recurrences, that
leads to the “almost-perfect” kind of solutions.
Consider the sum

f(n) :=
n−β∑
k=α

F (n, k) ,

where α and β are constants and [α, n − β] is properly contained in [0, n], the
support of F (n, k). Assume also that there exists a function G(n, k), (the so-called
certificate) such that

a(n)F (n+ 1, k) + b(n)F (n, k) = G(n, k + 1)−G(n, k) . (WZeqn)

Take α = 0 and β = 1. Then, if we add both sides of (WZeqn) from k = 0 to
k = n and rewrite the result we get a nonhomogeneous recurrence relation satisfied
by f(n):

a(n)f(n+ 1) + b(n)f(n) = G(n, n)−G(n, 0) + a(n)F (n+ 1, n) (nonhomorec)

Finally, we solve (nonhomorec) and get the following representation of f(n) as an
indefinite sum:

f(n) = g(n)
n−1∑
i=0

C(i)
g(i)a(i)

,

where C(i) is the right-hand side of (nonhomorec) and g(n) is the solution to the
associated homogeneous equation a(n)f(n+ 1) + b(n)f(n) = 0.
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We note that in cases where α 6= 0 and β 6= 1, the left-hand side of (nonhomrec)
remains the same. The only change is on the right-hand side.

Theorem 1:

n−1∑
k=0

(
n

k

)−2

=
(n+ 1)!(n+ 1)2

(n+ 3
2 )!4n

n−1∑
j=0

(3j3 + 12j2 + 18j + 10)4j(j + 3/2)!
(j + 1)2(j + 1)!(j + 2)3

.

Proof : We construct the function

G(n, k) =
(2k − 3n− 6)(k − n− 1)2(

n
k

)2
such that (4n + 10)(n + 1)2F (n + 1, k)− (n + 2)2F (n, k) = G(n, k + 1)−G(n, k),
where F (n, k) is the summand on the left-hand side sum.

Next add both sides from k = 0 to k = n and rearrange to get the nonhomogeneous
recurrence relation satisfied by the sum on the left-hand side, Sn :

(4n+ 10)(n+ 1)2Sn+1 − (n+ 2)2Sn = 3n3 + 12n2 + 18n+ 10 .

Finally the theorem follows by solving this recurrence with the initial condition
S1 = 1.

Next we give q-analog of (Rokett). Let (a, q, n) = (1− aq)(1− aq2) . . . (1− aqn−1).

Theorem 2 [q-binomial]:

n−1∑
k=0

q−k(k−1)/2[
n
k

]
q

=
(q2, q, n)
(q2, q2, n)

n−1∑
i=0

C(i)(q2, q2, i)
(q2, q, i)(qi+1 − 1)(qi+2 − 1)

,

where

C(i) = (q3(i+2−i2)/2+2q2i+2−q−(i+1)(i−2)/2−q−(i+1)(i−4)−qi+1−q3i+3−q−i(i−1)/2) .

Proof : We construct the function

G(n, k) =
qn+1(qn−k+1 − 1)q−k(k−1)/2[

n
k

]
q

such that (qn+2−1)F (n, k)−(qn+−1)(qn+1 +1)F (n+1, k) = G(n, k+1)−G(n, k),
where F (n, k) is the summand on the left-hand side.

Add both sides from k = 0 to k = n and rearrange to get the nonhomogeneous
recurrence relation satisfied by the sum on the left-hand side, Sn :

(qn+2 − 1)Sn − (qn+ − 1)(qn+1 + 1)Sn+1 =
C(n)

qn+1 − 1
.
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Finally the theorem follows by solving this recurrence with the initial condition
S1 = 1.

n∑
k=0

q−k(k−1)/2[
n
k

]
q

= q−n(n−1)/2 +
(q2, q, n)
(q2, q2, n)

n−1∑
i=0

C(i)(q2, q2, i)
(q2, q, i)(qi+1 − 1)(qi+2 − 1)

.

Next we consider the reciprocal of the summand in Chu-Vandermonde and Dixon’s
classical identities.

Theorem 3 [Chu-Vandermonde]
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C(i)
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g(m) =
(a+m− n+ 1)!(a+ 4)!(m+ 1)

2(a+m+ 3)!(a− n+ 2)!
and

C(m) = (n+m+mn+ 1)
(
a

n

)−1

+ (2m+ a− n+ 3)
(

a

n−m

)−1

.

Proof : The proof follows similarly from the recurrence relation

(m+ 2)(a+m− n+ 2)Sm − (a+m+ 4)(m+ 1)Sm+1 = C(m) .
where Sm is the sum on left-hand side.

Theorem 4 [Dixon]

n−1∑
k=0

(−1)k
(
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n+ c
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)−1(
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b+ k

)−1

= g(n)
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−C(i)
g(i)(2i+ 2)(c+ i+ 2)(b+ i+ 2)

where

g(n) =
(c+ n+ 1)(b+ n+ 1)

(c+ 1)(b+ 1)
(c+ b+ 2)!n!

(b+ c+ n+ 2)!
and

C(n) = (−1)n(bc + 3bn + 3b + 3nc + 5n2 + 2n + 3c + 7)
(
n+b
2n

)−1(b+c
b+n

)−1 − (n +
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)−1(b+c
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.
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Proof : The proof follows similarly from the recurrence relation

2(n+1)(c+n+2)(b+n+2)Sn−2(c+n+1)(b+n+1)(b+ c+n+3)Sn+1 = C(n) .

where Sn is the sum on left-hand side.

Remarks a) From the recurrence in the proof of theorem 1,

2Sn =
(n+ 1)3

2n3 + 3n2
Sn−1 +

3n3 + 3n2 + 3n+ 1
2n3 + 3n2

that implies

lim
n→∞

n∑
k=0

(
n

k

)−2

= 2 .

b) Identity (Rockett) is a special case of the following identity with x = y = 1 in

n∑
k=0

(
n

k

)−1

xkyn−k = xn +
(

xy

x+ y

)n
(n+ 1)

n−1∑
j=0

((j + 1)yj+2 + yxj+1)(x+ y)j

(xy)j+1(j + 1)(j + 2)

which follows from the recurrence [Sn the left-hand side sum]:

(x+ y)(n+ 1)Sn+1 − (n+ 2)xySn = (n+ 1)yn+2 + yxn+1 .

c) T. Mansour [1] derived the following representation for the reciprocals of binomial
coefficients to any power m as:

n−1∑
k=0

(
n

k

)−m
= (n+ 1)m

n∑
k=0

 k∑
j=0

(−1)j

n− k + 1 + j

(
k

j

)m .
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