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1. Introduction

This paper presents a general method for proving and discovering combinatorial identities: to prove an
identity one can present a certi�cate that consists of a pair of functions of two integer variables. To prove
the identity, take the two functions that are given, check that condition (1) below is satis�ed (a simple
mechanical task), and check the equally simple fact that the boundary conditions (F1), (G1), (G2) below
are satis�ed. The identity is then proved.

Alternatively, one can present the identity itself, and a single rational function. To prove the identity the
reader would then construct the pair of functions referred to above, and proceed as before (see x3 below).

In this paper we present several one-line proofs of hypergeometric identities. All of these one-line proofs
were found by using the method presented below, on computers that have strong symbolic manipulation
packages. Once the proofs have been found, they can be checked by hand or on small personal computers
that would need only minimal symbolic manipulation capability.

Not too long ago the world of combinatorial identities consisted of hundreds of individually proved relations
(for a valuable collection of these see [10]), mostly involving binomial coe�cients. As a result of ideas of H.
Bateman (see the introduction to [10]), G. Andrews [1], and others, it is widely recognized that most of these
are special cases of relatively few hypergeometric identities, and attention is now being turned to methods
of systematizing these higher level relationships.

Gosper [9] has shown how to �nd inde�nite hypergeometric sums, where they exist, by quite a general
procedure (see [11]). In this paper we describe a general attack on de�nite hypergeometric, and other, sums,
continuing the program started in [13{15].

� The method can prove, in a uni�ed way, virtually all known hypergeometric sum identities (and
therefore legions of binomial coe�cient identities too). It does this by means of certi�cates of proof,
each of which consists of a pair of functions (F;G) (a `WZ-pair') that satisfy certain conditions,
described below. As a by-product, each such pair (F;G) will actually certify the truth of two identities,
with no extra e�ort.

� The method can discover, in a uni�ed way, new identities. We will show how, to any WZ-pair (F;G),
one can associate a dual pair (F 0; G0), that may produce one or two additional identities, which we
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will call the duals of the original ones. So altogether we will have not only the proof of the original
identity, but the discovery and proof of two or three additional identities.

� But even more is true. Most hypergeometric identities involve a few auxiliary free parameters. By
specializing these parameters, we get a countless number of new identities, that are however trivially
implied by the original, more general identity. It turns out that the dual of a specialization is not, in

general, a specialization of the dual. So the trivial process of specialization, composed with the new
operation of dualization leads to the discovery of countless new identities, that a priori seem highly
nontrivial.

For example many of Gosper's `strange' identities, that were tackled one at a time in [7], turn out to be
duals of specializations of classical identities (mostly those of Saalsch�utz and Dougall). Those identities in [7]
whose duals are not specializations of classical identities are very possibly the result of iterating specialization
and dualization several times. Dr. Stanton points out that [8] also identi�es the `strange' identities as duals
of specializations of classical identities, in that case relative to a notion of `duality' that is based on Lagrange
inversion.

Another striking example of the insight gained by this new concept of the dual identity is the realization
that Dixon's classical well-poised 3F2 (see, e.g., [2]) that has three free parameters is nothing but the dual of
a certain specialization of the famous (four-parameter), balanced, Saalsch�utz identity. (Precisely, the dual
of Dixon's

3F2

�
a b �n

1 + a � b 1 + a+ n

�

is the specialization

3F2

�
�a+ n+ 1 �a=2 + b �n

�a=2 + 1 b� a+ 1

�

of Saalsch�utz.)

2. The main theorem

The idea is this. Suppose we have two functions F (n; k), G(n; k), de�ned for integer k and integer n � 0,
and suppose the following condition is satis�ed:

(1) F (n+ 1; k)� F (n; k) = G(n; k + 1)� G(n; k) (integers n � 0; k):

We will then call (F;G) a WZ-pair.1

We show that under certain additional boundary conditions ((F1), (G1), (G2) below) we obtain a simple
evaluation of the sum

(2)
X
k

F (n; k) (n = 0; 1; 2; : : :)

We also obtain a simple evaluation of the associated sum

(3)
X
n�0

G(n; k)

1Named after two complex variables.
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Thus we will obtain two identities, one for each member of the WZ-pair. The proofs of the identities will
consist in simply verifying that the condition (1) is satis�ed, along with the following boundary conditions:

(F1) For each integer k, the limit

(4) fk = lim
n!1

F (n; k)

exists and is �nite.
(G1) For each integer n � 0, limk!�1G(n; k) = 0.
(G2) We have limL!1

P
n�0G(n;�L) = 0.

Theorem A. Let (F;G) satisfy (1). If (G1) holds then we have the identity

(5)
X
k

F (n; k) = const: (n = 0; 1; 2; : : :);

(where `const.' is found by putting n = 0). Further, if (F1), (G2) hold then we have the identity

(6)
X
n�0

G(n; k) =
X

j�k�1

(fj � F (0; j));

where f is de�ned by (4).

Proof. Sum both sides of equation (1) from k = �L to k = K. This gives

�n

� KX
k=�L

F (n; k)

�
=

KX
k=�L

f�kG(n; k)g

= G(n;K + 1)� G(n;�L);

where �n and �k are the forward di�erence operators that act on n and k, respectively. If we let K;L!1
and use (G1), we discover that

P
k F (n; k) is independent of n � 0, and (5) is proved.

Similarly if we sum both sides of (1) from n = 0 to N , we obtain

F (N + 1; k)� F (0; k) = �k

� NX
n=0

G(n; k)

�

Taking the limit as N !1 and using (F1) yields

fk � F (0; k) = �k

�X
n�0

G(n; k)

�

Finally, if we sum from �L to k � 1, let L!1, and use (G2), we get (6).

We remark that trivially all WZ-pairs can be constructed as follows. First choose any function �(n; k)
(the `potential function'). Then set F = �k� and G = �n�. This enables us to manufacture identities all
day long, and if we want hypergeometric identities, all we have to do is choose � to be of closed form (see
below). However, �nding interesting identities that way is not so easy.
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3. Examples of certi�cation.

Example 1.

To begin with a simple case, consider the WZ-pair

F (n; k) =

�
n

k

� .
2n;

G(n; k) = �

�
n

k � 1

� .
2n+1:

A quick check of (1), (F1), (G1), (G2) shows that they are all satis�ed, and that fk = 0 for all k. Then (5)
and (6) become the two identities X

k

�
n

k

� .
2n = 1 (n � 0);

and X
n�0

�
n

k � 1

� .
2n+1 = 1 (k � 1)

Example 2. Consider the pair

F (n; k) =
n!2

k!2(a � k)!(n� k)!(n+ a)!
;

G(n; k) = �
a � k + 1

n + a+ 1
F (n; k� 1)

As soon as we check that the conditions (1), (F1), (G1), (G2) are satis�ed, again with all fk = 0, we have a
proof of Vandermonde's identity (the sum is �nite)

X
k

�
a

k

��
n

k

�
=

�
n+ a

a

�
;

as well as of the identity (the sum is in�nite)

X
n

�
n

k

�
�
n+a+1

n

� = a+ 1

(k + 1)
�

a

k+1

� (integer a > k � 0)

Example 3. The functions

F (n; k) =

�
2n

n

��1�
n

k

�2
;

G(n; k) = �
(3n� 2k + 3)

2(2n+ 1)
F (n; k� 1)

are a WZ-pair, and once more all fk = 0. Thus we have the two identities

X
k

�
n

k

�2
=

�
2n

n

�
(n � 0);
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X
n�0

(3n + 1� 2k)

(2n+ 1)
�
2n

n

�
�
n

k

�2
= 2 (k � 0)

Example 4.

To prove the identity of Saalsch�utz we need only check that the two functions

F (n; k) =
(a+ k � 1)!(b+ k � 1)!n!(�a� b+ c+ n � 1� k)!(c+ n� 1)!

k!(n� k)!(c+ k � 1)!(c� a+ n � 1)!(c� b+ n� 1)!
;

G(n; k) = �
(b+ k � 1)(a+ k � 1)

(c� b+ n)(c � a+ n)
F (n; k� 1)

are a WZ-pair and satisfy (F1), (G1), (G2). In this case

fk = lim
n!1

F (n; k) =
(a + k � 1)!(b+ k � 1)!

k!(c+ k � 1)!

Hence we have a proof not only of Saalsch�utz's identity (which is (5) in this case)

3F2

�
a; b; �n

c; 1 + a+ b� c� n

�
=

(c� a)n(c� b)n
(c)n(c � a� b)n

but also of the identity (6), which takes the form

3F2

�
k c� a � b c+ k � 1

c� b+ k c� a+ k

�

=
(c� b)k(c� a)k

(a)k(b)k

�
1�

(c� a� b)a
(c� a)a

k�1X
j=0

(a)j(b)j
j!(c)j

�
;

in which the sum on the left is in�nite. This identity is essentially in x10.4 of Bailey [2]. We will �nd, generally,
that the companion identity (6) of a hypergeometric identity is of the type that relates a hypergeometric
function to a partial sum of the series for another hypergeometric function. Many such identities are known,
and our method shows a natural reason for their existence.

Example 5.

A complete proof of the identity of Clausen [11, p. 525]

4F3

�
a; b; 1

2
� a� b� n; �n

1

2
+ a+ b; 1� a � n; 1� b� n

�
=

(2a)n(a+ b)n(2b)n
(2a+ 2b)n(a)n(b)n

results from checking the following WZ-pair:

F (n; k) = �(k)�(n� k) (n);

G(n; k) = �
(b+ k � 1)(a+ k � 1)(2b+ 2a+ 3n� 2k + 2)

(2b+ n)(a+ b+ n)(2a + n)
F (n; k� 1);
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where

�(t) =
(a+ t� 1)!(b+ t� 1)!

t!(�1

2
+ a+ b+ t)!

;

 (t) =
(t + a+ b� 1

2
)!t!(t+ 2a+ 2b� 1)!

(t + 2a� 1)!(t+ a+ b� 1)!(t+ 2b� 1)!

The second identity that the same pair proves is

X
n�0

(2b+ 2a+ 3n� 2k)�(n� k) (n)

(n+ 2b)(n+ 2a)(n+ a+ b)
=
�(0)2 (0) �

Pk

j=0 �(j)

(k + a)(k + b)�(k)
(k � 0);

where � and  are as shown above.

Example 6.

The identity of Dixon is

X
k

(�1)k
�
n+ b

n+ k

��
n+ c

c+ k

��
b+ c

b+ k

�
=

(n+ b+ c)!

n!b!c!

The WZ-pair that works here is

F (n; k) =
(�1)k(n+ b)!(n+ c)!n!

(n � k)!(n+ k)!(b� k)!(b+ k)!(c� k)!(c+ k)!(n+ b+ c)!
;

G(n; k) =
(c+ 1� k)(b+ 1� k)

2(n+ k)(n+ b+ c + 1)
F (n; k� 1)

Here we �nd that the fk of (4) are

fk =
(�1)k

(b � k)!(b+ k)!(c� k)!(c+ k)!

Then the general identity (5) of the theorem becomes Dixon's identity, above. We leave the identity that
comes from (6), in this case, to the reader.

Remark:

The certi�cation can be done in another way. Instead of giving the WZ-pair (F;G), one can state the
identity to be proved in its familiar form, say asX

k

U (n; k) = rhs(n) (n � 0; rhs(n) 6= 0)

To certify it, one need only give the rational function R(n; k) that satis�es G(n; k) = R(n; k)F (n; k � 1);
nothing else.

The reader who wished to check the certi�cate would proceed as follows:

(a) Divide the identity through by rhs(n), obtaining the �rst member of the WZ-pair as F (n; k) =
U (n; k)=rhs(n).

(b) Find G(n; k) = R(n; k)F (n; k� 1).
(c) Check that conditions (1), (F1), (G1), (G2) are satis�ed.
(d) Verify that the identity is true when n = 0.

Hence one can imagine a book full of identities and their proofs, where each proof consists of just giving a
certain rational function. In [12] there are 54 examples of such certi�cations of binomial coe�cient identities.
Here are some hypergeometric examples.
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Theorem. Dixon's identity above is true.

Proof. Take R(n; k) = (c+ 1� k)(b+ 1� k)=(2(n+ k)(n+ b+ c+ 1)).

Theorem. The `strange' identity (1.4) of Gessel-Stanton [7]

X
k

�
3

4

�k (k + 3a� 1

2
)!(k � 3a� 1

2
)!(3n� k)!

k!(n� k)!(k � 1

2
)!

=
(3n)!(n� a� 1

2
)!(n+ a� 1

2
)!

n!(n� 2

3
)!(n� 1

3
)!

is true.

Proof. Take

R(n; k) =
1

9

(6a+ 2k � 1)(6a� 2k + 1)

(2n+ 2a+ 1)(2n� 2a+ 1)

We remark that here the companion identity (6) is new to us. It is

X
n�0

n!(3n� k)!(n� 2

3
)!(n� 1

3
)!

(n� k)!(3n)!(n� a+ 1

2
)!(n+ a+ 1

2
)!

=
9k!(k � 1

2
)!

(3
4
)k(k + 3a+ 1

2
)!(k � 3a+ 1

2
)!

�

�
2

r
�

3

cos (�a)

cos (3�a)
�
X
j�k

(3
4
)j(j + 3a� 1

2
)!(j � 3a� 1

2
)!

j!(j � 1
2
)!

�

Theorem. The `strange' identity (1.7) of [7], which asserts that

X
k

(k + 2

3
a)(n + k + a+ d� 1

2
)!(k + a� d� 1)!(2n+ 2d� k)!(k + 2a� 1)!(k+ 2b� 1)!(k � 2b)!

(k + a + b� 1

2
)!(k + 2d)!(2n+ k + 2a)!k!(n� k)!(k+ a� b)!

=
(n+ a + d� 1

2
)!(n+ b+ d� 1

2
)!(n+ d� b)!

n!(n+ a+ b � 1

2
)!(n+ a� b)!

is true.

Proof. Take R(n; k) to be the rational function

�
(4n+ 2d+ 2a+ 3)(k + 2b� 1)(k � 2b)(k + 2a� 1)(k + a� d� 1)(2n+ 2k + 2a+ 2d� 1)

(2n+ k + 2a)(2n+ 2d+ 2a+ 1)(3k + 2a� 3)(n+ d� b+ 1)(2n+ 2b+ 2d+ 1)(2n+ k + 2a+ 1)

Theorem. The `strange' identity (1.2) of [7]

X
k

(�1
4
)k(k + 2a� 1)!(k + 2b� 1)!(k� 2b)!(k+ 2

3
a)

k!(n� k)!(k + a� b)!(k + a+ b� 1

2
)!(2n+ k + 2a)!

=
(n + a� 1

2
)!(n+ a)!

n!(2n+ 2a)!(n+ a + b� 1

2
)!(n+ a� b)!

is true.

Proof. Take

R(n; k) = �
(k + 2b� 1)(k � 2b)(k + 2a� 1)

4(2n+ k + 2a+ 1)(2n+ k + 2a)(3k + 2a� 3)
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Theorem. The 7F6 identity of Dougall

7F6

�
d; 1 + d

2
; d+ b� a; d+ c� a; 1 + a� b� c; a+ n; �n

d
2
; 1 + a� b; 1 + a� c; b+ c+ d� a; 1 + d� a� n; 1 + d+ n

�

=
(d+ 1)n(b)n(c)n(1 + 2a� b� c� d)n

(a� d)n(1 + a� b)n(1 + a� c)n(b+ c+ d� a)n

is true.

Proof. Just take R(n; k) to be

�
(k � b� c+ a)(k + d� 1)(k + b+ d� a� 1)(k + c+ d� a� 1)(n+ k + a� 1)(2n+ a+ 1)

(2k + d� 2)(n+ a)(n+ b)(n+ c)(n � b� c� d+ 2a� 1)(k + n+ d)

4. Shadows

In the following we maintain the convention that the range of n is the set of nonnegative integers, while
the range of k is the set of all integers.

De�nition. A discrete function f(n) is said to be of closed form iff(n+1)=f(n) is a rational function of n.

It is easily seen that any closed form function f has the form

xn
A(n)

B(n)

Q
i(ain+ bi)!Q
i(a

0
in+ b0i)!

De�nition. A function F (n; k) is said to be of closed form (CF) if both R(n; k) = F (n+ 1; k)=F (n; k) and
R0(n; k) = F (n; k + 1)=F (n; k) are rational functions, of n and of k, respectively.

Note that R(n; k) and R0(n; k) plus some initial conditions determine F (n; k) uniquely. However R and
R0 must satisfy the obvious compatibility condition

R(n; k + 1)R0(n; k) = R(n; k)R0(n+ 1; k)

De�nition. Two discrete functions F (n; k) and F 0(n; k), de�ned in di�erent regions of the lattice, are
equivalent if they produce the same (R;R0).

Example In one variable, n! (for n � 0) is equivalent to (�1)n=(�n � 1)! (de�ned for n < 0). In two
dimensions (an+ bk + c)!, where a and b are integers, is equivalent to

(�1)an+bk

(�an� bk � c� 1)!

Also,
�
n

k

�
is equivalent to

(�1)n+k
�
�k � 1

�n� 1

�
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De�nition. The shadow ~F of a CF F (n; k) of the form

xnyk (Rational Function)�

Q
(ain + bik + ci)!Q
(a0in + b0ik + c0i)!

is obtained by replacing every factor (an + bk + c)! by

(�1)an+bk=(�an� bk� c� 1)!;

if a+ b 6= 0, and leaving it alone if a + b = 0.

For example, the shadow of
�
n

k

�
is (�1)n+k

�
�k�1
�n�1

�
.

Theorem B. Let (F;G) be a WZ-pair, and suppose that G(n; k)=F (n; k�1) is a rational function of n and
k. Then

(7) (F 0(n; k); G0(n; k)) := ( ~G(�k � 1;�n); ~F(�k;�n � 1))

is also a WZ-pair.

Proof. The pair ( ~F ; ~G) is equivalent to the original pair (F;G), and therefore it satis�es equation (1), though
not for n � 0, but instead for n < 0. The 
ips of variables and functions shown in (7) transform the domain
of n back to the nonnegative integers, while preserving the fact that (1) is satis�ed.

The map (F;G)! (F 0; G0) is an involution, hence we call (F 0; G0) the dual of the WZ-pair (F;G).
While the dual pair certainly satis�es the condition (1), it need not satisfy all of (F1), (G1), (G2).

Depending on those outcomes, we may obtain only one, or both, of the identities (5), (6) as dual identities.
The examples in the next section illustrate this.

5. Examples of dual identities.

Example 1'.

With the F and G of Example 1 above, the dual WZ-pair is

(F 0(n; k); G0(n; k)) = (�1)n+k2k
��

n

k

�
;

�
n

k � 1

��

Condition (F1) is not satis�ed, but (G1), (G2) are, so by Theorem A we have identity (5), which is the
statement

P
k F

0(n; k) = const.

Example 3'.

If we use the (F;G) of Example 3, x3 above, then we �nd that the dual pair is

F 0(n; k) =
3k� 2n

2

�
n

k

�2�
2k

k

�
;

G0(n; k) =
k

2

�
n

k � 1

�2�
2k

k

�
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The boundary conditions (G1), (G2) are satis�ed, and so we have thatP
k F

0(n; k) is independent of n � 0. Since it is 0 when n = 0, we have proved the dual identity

X
k

(3k � 2n)

�
n

k

�2�
2k

k

�
= 0 (n = 0; 1; : : :)

Example 40.

In the case of the Saalsch�utz WZ-pair, of Example 4, an easy calculation shows that the dual F is

F 0(n; k) = �
(n � k + c� a� b� 1)!(k� c+ b)!(k� c+ a)!(n!)(n+ 1� c)!

(n� b)!(n� a)!(k)!(k� c+ 1)!(n� k)!

We observe that this F 0 is, aside from a sign and a renaming of the parameters a; b; c, the same as the original
F . Hence the identity of Saalsch�utz is self dual.

Example 60.

The dual of Dixon's identity (Example 6, x3 above) is quite interesting. We �nd that

F 0(n; k) =
(�1)k(n + k)!(k � b� c� 1)!(�n� b� 1)!(n� b)!(�n� c� 1)!(n� c)!

2(k � b)!(k � c)!k!(n� k)!

Also

G0(n; k) =
(�1)k(n+ k)!(�n � b� 2)!(n� b)!(�n� c � 2)!(n� c)!(k � b� c� 1)!

(k � b� 1)!(k� c� 1)!(k � 1)!(n� k � 1)!

Now (F1), (G1), and (G2) all hold. The identity (5) for F 0 can be written in the following form, after
renaming the free variables b; c to �b;�c:

X
k

(�1)k
�
n

k

��
k+b+c�1

k+c

�
�
b+k

n+k

� =
2(b� n)

b+ c

�
b+c

b

��
2c�1
n+c

�
�
2c

c

��
n+b

b

�

where 0 � n � b, and it is a specialization of Saalsch�utz's.

Example 70.

The �rst identity of the pair that is dual to the identity (1.4) of [7] is the specialization

3F2

�
1�2n
3
; �2n

3
; �2n+1

3

�n+ a+ 1

2
; �n � a� 1

2

�

of Saalsch�utz's identity.

Example 80.

The �rst identity of the pair that is dual to the identity (1.7) of [7] is the specialization

F

�
1

2
� a� d 5

4
� a+d

2
b� d n+1

2
� a n

2
� a+ 1 1

2
� b� d �n

1

4
� a+d

2

3

2
� a� b 1� d� n

2

1�n
2
� d b� a+ 1 n � a� d+ 3

2

�

of Dougall's 7F6 identity.
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Example 90.

The �rst identity of the pair that is dual to the identity (1.2) of [7] is the specialization

3F2

�
�a+ 3

2
+ n

2
; �a + 2 + n

2
; �n

3
2
� a� b; 1� a+ b

�

of Saalsch�utz's identity.
In each of the last three examples it should be noted that since duality is symmetric, the three identities

of [7] are proved above by the process of specialization of known identities followed by dualization. They
were proved in x3 directly by the certi�cation process.

6. The soul in the machine.

Every identity of the form
P

k F (n; k) = rhs(n), where F (n; k) and rhs(n) are of CF and rhs(n) 6= 0 is
equivalent to one in which rhs(n) = 1: simply divide through by rhs(n). Does every such F have a mate G?

Not always, but very often, and there is something weaker that is always guaranteed. In [14] it was shown,
using the general theory of [13], that for every holonomic F (n; k), there exists a CF G(n; k), that is moreover
of the form R(n; k)F (n; k) for some rational function R(n; k), such that for some L and polynomials (in n)
a0(n); a1(n); : : : ; aL(n) we have

(8)
a0(n)F (n; k) + a1(n)F (n+ 1; k) + � � �+ aL(n)F (n+ L; k)

= G(n; k+ 1)�G(n; k)

It follows upon summing w.r.t. k that S(n) =
P

k F (n; k) satis�es the recurrence

a0(n)S(n) + a1(n)S(n + 1) + a2(n)S(n + 2) + � � �+ aL(n)S(n + L) = 0;

where the ai are polynomials in n. To prove that S(n) is indeed 1 (or a constant) all we have to check is
that 1 is also a solution of the recurrence, i.e. that

P
i ai(n) = 0, and that S(n) = 1 for n = 0; 1; : : : ; L� 1

(assuming that aL(n) has no positive integral roots).
So for holonomic summands one always has the certi�cate

(G(n; k); a0(n); : : : ; aL(n))

and all we have to do is to verify that (8) is satis�ed. If we are lucky the recurrence is �rst order (i.e. L = 1),
and a0 + a1 = 0, so, by dividing through by a0 we get (1). The amazing thing is that it happens so often.
We know of only two cases where L > 1.

So thanks to the general theory of [13], that is based on I. N. Bernstein's theory of holonomic systems
(see [3]), we know that G(n; k) of CF exists, as do the the ai's. Hoping that indeed L = 1, we have to �nd
G(n; k) of CF that satis�es (1), where F (n; k) is given. This is done by Gosper's beautiful algorithm [9],
that decides for us when such a G exists, and when it does, �nds it.

It is amazing that we are lucky so often, and whenever we are, we get in addition to a proof of the original
identity, some brand new identities, complete with proofs.
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