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Dedicated to Neil James Alexander Sloane (born Oct. X, MCMXXXIX) on his turning

1001111 years young (100101 days late)

Yesterday, Neil Sloan gave a great talk([S1]), where among many other fascinating results and

open problems, he mentioned a conjecture that he made less than two months ago, concerning the

“planing” operation (raboter) introduced in 2004 by sequence enthusiast Claude Lenormand, and

described in [S2]. He also mentioned that he has no idea how hard it is to prove, and made a

‘meta-conjecture’ that it may be a ‘low-hanging fruit’. I will now show that both conjecture and

meta-conjecture are true.

By examining the definition of http://oeis.org/A318921 in terms of the binary representation

of n, it is readily seen that r(n) may be defined recursively as follows

r(n) :=



2 r(n/2) , if n ≡ 0 (mod 4 ) ;

r(n−1
2 ) , if n ≡ 1 (mod 4 ) ;

r(n/2) , if n ≡ 2 (mod 4 ) ;

2 r(n−1
2 ) + 1 , if n ≡ 3 (mod 4 ) ,

subject to the initial conditions r(0) = 0 and r(1) = 0.

Sloane defined, for, integers k, k ≥ 1,

L(k) :=

2k+1−1∑
n=2k

r(n) ,

and conjectured the following

Fact: L(k) = 2 · 3k−1 − 2k−1 .

Indeed, breaking up the sum into the four congruence classes modulo four, we have

L(k) =

2k+1−1∑
n=2k

r(n)

=

2k−1−1∑
m=2k−2

r(4m) +

2k−1−1∑
m=2k−2

r(4m + 1) +

2k−1−1∑
m=2k−2

r(4m + 2) +

2k−1−1∑
m=2k−2

r(4m + 3)

1



=
2k−1−1∑
m=2k−2

2 r(2m) +

2k−1−1∑
m=2k−2

r(2m) +

2k−1−1∑
m=2k−2

r(2m + 1) +

2k−1−1∑
m=2k−2

( 2 r(2m + 1) + 1 )

= 3

2k−1−1∑
m=2k−2

r(2m) +

2k−1−1∑
m=2k−2

r(2m + 1) + 2

2k−1−1∑
m=2k−2

r(2m + 1) +

2k−1−1∑
m=2k−2

1

= 3

 2k−1−1∑
m=2k−2

r(2m) +

2k−1−1∑
m=2k−2

r(2m + 1)

 + 2k−2

= 3

 2k−1∑
m=2k−1

r(m)

 + 2k−2 = 3L(k − 1) + 2k−2 .

Hence the sequence L(k) satisfies the first-order inhomogeneous recurrence with constant coefficients

L(k) − 3L(k − 1) = 2k−2 .

But R(k) := 2 · 3k−1 − 2k−1 also satisfies the same recurrence, i.e.

R(k) − 3R(k − 1) = 2k−2 ,

(check!), and the fact follows by induction on k, since it is true for k = 1.

References

[S1] N.J.A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences, talk

given in Rutgers University Experimental Mathematics Seminar, Nov. 15, 2018.

part 1: https://vimeo.com/301216222 ; part 2: https://vimeo.com/301219515 .

slides: http://sites.math.rutgers.edu/~my237/expmath/EMNov2018.pdf .

[S2] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, Sequence A318921,

http://oeis.org/A318921 .

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-

Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.

Email: DoronZeil at gmail dot com .

Exclusively published in the Personal Journal of Shalosh B. Ekhad and Doron Zeilberger.

Nov. 16, 2018.

2


