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Preface

This expository article, describes two complementary approaches to enumeration, the positive and
the negative, each with its advantages and disadvantages. Both approaches are amenable to au-
tomation, and when applied to the currently active subarea, initiated in 2003 by Sergi Elizalde,
of consecutive pattern-avoidance in permutations, were successfully pursued by my two current
PhD students, Andrew Baxter[B] and Brian Nakamura[N]. In addition to briefly explaining what
they did, I also, as an independent check, developed two Maple packages, SERGI and ELIZALDE

implementing the algorithms that enable the computer to ”do research” by deriving, ”all by itself”,
functional equations for the generating functions that enable polynomial-time enumeration for any
set of patterns. In the case of ELIZALDE (the ”negative” approach), these functional equations
can be sometimes (automatically!) simplified, and imply ”explicit” formulas, that previously were
derived by humans using ad-hoc methods. We also get lots of new ”explicit” results, beyond the
scope of humans, but we have to admit that we still need humans to handle ”infinite families” of
patterns, but this too, no doubt, will soon be automatable, and I leave it as a challenge to the
(human and/or computer) reader.

Consecutive Pattern Avoidance

Inspired by the very active research in pattern-avoidance, pioneered by Herb Wilf, Rodica Simion,
Frank Schmidt, Richard Stanely, Don Knuth and others, Sergi Elizalde, in his PhD thesis (written
under the direction of Richard Stanley) introduced the study of permutations avoiding consecutive
patterns.

Recall that an n-permutation is a sequence of integers π = π1 . . . πn of length n where each integer
in {1, . . . , n} appears exactly once. It is well-known and very easy to see (today!) that the number
of n-permutations is n! :=

∏n
i=1 i .

The reduction of a list of different (integer or real) numbers (or members of any totally ordered set)
[i1, i2, . . . , ik], to be denoted by R([i1, i2, . . . , ik]), is the permutation of {1, 2, . . . , k} that preserves
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the relative rankings of the entries. In other words, if p = p1 . . . pk is the reduction of q = q1 . . . qk

then qi is the pi-th largest entry in q. For example the reduction of [4, 2, 7, 5] is [2, 1, 4, 3] and the
reduction of [π, e, γ, φ] is [4, 3, 1, 2].

Fixing a pattern p = [p1, . . . , pk], a permutation π = [π1, . . . , πn] avoids the consecutive pattern p

if for all i, 1 ≤ i ≤ n− k + 1, the reduction of the list [πi, πi+1, . . . , πi+k−1 is not p. More generally
a permutation π avoids a set of patterns P if it avoids each and every pattern p ∈ P.

The central problem is to answer the question: “Given a pattern or a set of patterns, find a
“formula”, or at least an efficient algorithm, that inputs a positive integer n and outputs the
number of permutations of length n that avoid that pattern (or set of patterns)”.

Human Research

After the pioneering work of Elizalde and Noy [EN], quite a few people contributed significantly,
including Anders Claesson, Toufik Mansour, Sergey Kitaev, Anthony Mendes, Jeff Remmel, and
the more recently, Vladimir Dotsenko and Anton Khoroshkin and Boris Shapiro. Also recently
we witnessed the beautiful resolution of the Warlimont conjecture by Richard Ehrenborg, Sergey
Kitaev, and Peter Perry [EKP]. The latter paper also contains extensive references.

Recommended Reading

While the present expository article is self-contained, the readers would get more out of it if they
are familiar with [Z1], and its sequels [EZ][Z1][Z2][Z3][Z4].

Outline of the Positive Approach (according to Andrew Baxter[B])

Instead of dealing with avoidance (the number of permutations that have zero occurrences of
the given pattern(s)) we will deal with the more general problem of enumerating the number of
permutations that have specified numbers of occurrences of any pattern of length k.

Fix a positive integer k, and let {tp : p ∈ Sk} be k! commuting indeterminates (alias variables).
Define the weight of an n-permutation π = [π1, . . . , πn], to be denoted by w(π), by:

w([π1, . . . , πn] :=
n−k+1∏

i=1

tR([pi,pi+1,...,pi+k−1]) .

For example, with k = 3,

w([2, 5, 1, 4, 6, 3] := tR([2,5,1])tR([5,1,4])tR([1,4,6])tR([4,6,3]) =

t− 231t312t123t231 = t123t
2
231t312 .

We are interested in an efficient algorithm for computing the sequenec of polynomials in k! variables

Pn(t1,...,k, . . . , tk,...,1) :=
∑

π∈Sn

w(π) ,
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or equivalently, as many terms as desired in the formal power series

Fk(t1,...,k, . . . , tk,...,1; z) =
∞∑

n=0

Pnzn .

Note that once we have computed the Pn (or Fk), we can answer any question about pattern
avoidance by specializing the t’s. For example to get the number of n-permutations avoiding the
single pattern p, of length k, first compute Pn, and then plug-in tp = 0 and all the other t’s to
be 1. If you want the number of n-permutations avoiding the set of patterns P (all of the same
length k), set tp = 0 for all p ∈ P and the other t’s to be 1. Another advantage of the Pn(tp)’s is
that we can extract statistical information, averages, variance, and higher moments of the random
variable(s) “number of occurrences of the consectutive pattern(s) p (P))” by differentiating with
respect to the relevant tp’s and plugging-in 1 latter, but we will not pursue this option here.

First let’s recall one of the many proofs that the number of n-permutations, let’s denote it by a(n),
satisfies the recurrence

a(n + 1) = (n + 1)a(n) .

Given a typical member of Sn, let’s call it π = π1 . . . πn, it can be continued in n + 1 ways, by
deciding on πn+1. If πn+1 = i, then we have to “make room” for the new entry by incrementing by
1 all entries ≥ i, and then append i. This gives a bijection between Sn × [1, n + 1] and Sn+1 and
taking cardinalities yields the recurrence. Of course a(0) = 1, and “solving” this recurrence yields
a(n) = n!. Of course this solving is “cheating”, since n! is just shorthand for the solution of this
recurrence subject to the initial condition a(0) = 1, but from now on it is considered “closed form”
(just by convention!).

When we do weighted counting with respect to the weight w with a given pattern-length k, we have
to keep track of the last k − 1 entries of π:

[πn−k+2 . . . πn]

and when we append πn+1 = i, the new permutation (let a′ = a if a < i and a′ = a + 1 if a ≥ i)

. . . π′n−k+2 . . . π′ni ,

has “gained” a factor of tR[π′
n−k+2...π′ni] to its weight.

This calls for the finite-state method, alas, the “alphabet” is indefinitely large, so we need the
umbral transfer-matrix method.

We introduce k − 1 “catalytic” variables x1, x2, . . . , xk−1, as well as a variable z to keep track of
the size of the permutation, and (k − 1)! “linear” state variables A[q] for each q ∈ Sk−1, to tell
us the state that the permutation is in. and define the generailzed weight w′(π) of a permutation
π ∈ Sn to be:

w′(π) := w(π)xj1
1 xj2

2 . . . x
jk−1
k−1 znA[q] ,
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where [j1, . . . , jk−1], (1 ≤ j1 < j2 < . . . < jk−1 ≤ n) is the sorted list of the last k − 1 entries of π,
and q is the reduction of its last k − 1 entries.

For example, with k = 3:

w′([4, 7, 1, 6, 3, 5, 8, 2]) = t231t312t132t312t123t231x
2
1x

8
2z

8A[21] =

t123t132t
2
231t

2
312x

2
1x

8
2z

8A[21] .

Let’s give an example with k = 3. There are two states: [1, 2], [2, 1] corresponding to the cases
where the two last entries are j1j2 or j2j1 respectively (always we assume j1 < j2.

Suppose we are in state [1, 2], so our permutation looks like

π = [. . . , j1, j2] ,

and w′(π) = w(π)xj1
1 xj2

2 znA[1, 2]. We want to append i (1 ≤ i ≤ n+1) to the end. There are three
cases:

Case 1: 1 ≤ i ≤ j1

The new permutation, let’s call it σ, looks like

σ = [. . . j1 + 1, j2 + 1, i] .

Its state is [2, 1] and w′(σ) = w(π)t231xi
1x

j2+1
2 zA[2, 1].

Case 2: j1 + 1 ≤ i ≤ j2

The new permutation, let’s call it σ, looks like

σ = [. . . j1, j2 + 1, i] .

Its state is also [2, 1] and w′(σ) = w(π)t132xi
1x

j2+1
2 zA[2, 1].

Case 3: j2 + 1 ≤ i ≤ n + 1

The new permutation, let’s call it σ, looks like

σ = [. . . j1, j2, i] .

Its state is now [1, 2] and w′(σ) = w(π)t123x
j2
1 xi

2zA[1, 2].

It follows that any individual permutation of size n, and state [1, 2], gives rise to n + 1 children,
and regarding weight, we have the “umbral evolution” (here W is the fixed part of the weight, that
does not change):

Wxj1
1 xj2

2 znA[1, 2] → Wt231zA[2, 1]

(
j1∑

i=1

xi
1x

j2+1
2

)
zn
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+Wt132zA[2, 1]

 j2∑
i=j1+1

xi
1x

j2+1
2

 zn

+Wt123zA[1, 2]

 n+1∑
i=j2+1

xj2
1 xi

2

 zn

Taking out whatever we can out of the
∑

-signs, we have:

Wxj1
1 xj2

2 znA[1, 2] → Wt231zA[2, 1]

(
j1∑

i=1

xi
1

)
xj2+1

2 zn

+Wt132zA[2, 1]

 j2∑
i=j1+1

xi
1

xj2+1
2 zn

+Wt123zA[1, 2]

 n+1∑
i=j2+1

xi
2

xj2
1 zn

Now summing up the geometrical series, using the ancient formula:

b∑
i=a

Zi =
Za − Zb+1

1− Z
,

we get

Wxj1
1 xj2

2 znA[1, 2] → Wt231zA[2, 1]

(
x1 − xj1+1

1

1− x1

)
xj2+1

2 zn

+Wt132zA[2, 1]

(
xj1+1

1 − xj2+1
1

1− x1

)
xj2+1

2 zn

+Wt123zA[1, 2]

(
xj2+1

2 − xn+2
2

1− x2

)
xj2

1 zn

This is the same as:

Wxj1
1 xj2

2 znA[1, 2] → Wt231zA[2, 1]

(
x1x

j2+1
2 − xj1+1

1 xj2+1
2

1− x1

)
zn

+Wt132zA[2, 1]

(
xj1+1

1 xj2+1
2 − xj2+1

1 xj2+1
2

1− x1

)
zn

+Wt123zA[1, 2]

(
xj2

1 xj2+1
2 − xj2

1 xn+2
2

1− x2

)
zn
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This is what I called in [Z1] and its many sequels a “pre-umbra”. The above evolution can be
expressed for a general monomial M(x1, x2, z) as:

M(x1, x2, z)A[1, 2] → t231zA[2, 1]
(

x1x2M(1, x2, z)− x1x2M(x1, x2, z)
1− x1

)

+t132zA[2, 1]
(

x1x2M(x1, x2, z)− x1x2M(1, x1x2, z)
1− x1

)

+t123zA[1, 2]
(

x2M(1, x1x2, z)− x2
2M(1, x1, x2, z

1− x2

)
.

But by linearity this means that the coeff. of A[1,2] (the weight-enumerator of all permutations of
state [1, 2] obeys the evolution equation:

f12(x1, x2, z)A[1, 2] → t231zA[2, 1]
(

x1x2f12(1, x2, z)− x1x2f12(x1, x2, z)
1− x1

)

+t132zA[2, 1]
(

x1x2f12(x1, x2, z)− x1x2f12(1, x1x2, z)
1− x1

)

+t123zA[1, 2]
(

x2f12(1, x1x2, z)− x2
2f12(1, x1, x2z)

1− x2

)
.

Now we have to do it all over for a permutation in state [2, 1]. Suppose we are in state [2, 1], so our
permutation looks like

π = [. . . , j2, j1] ,

and w′(π) = w(π)xj1
1 xj2

2 znA[2, 1]. We want to append i (1 ≤ i ≤ n+1) to the end. There are three
cases:

Case 1: 1 ≤ i ≤ j1

The new permutation, let’s call it σ, looks like

σ = [. . . j2 + 1, j1 + 1, i] .

Its state is [2, 1] and w′(σ) = w(π)t321xi
1x

j1+1
2 zA[2, 1].

Case 2: j1 + 1 ≤ i ≤ j2

The new permutation, let’s call it σ, looks like

σ = [. . . j2 + 1, j1, i] .

Its state is also [1, 2] and w′(σ) = w(π)t312x
j1
1 xi

2zA[2, 1].

Case 3: j2 + 1 ≤ i ≤ n + 1
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The new permutation, let’s call it σ, looks like

σ = [. . . j2, j1, i] .

Its state is now [1, 2] and w′(σ) = w(π)t213x
j1
1 xi

2zA[1, 2].

It follows that any individual permutation of size n, and state [2, 1], gives rise to n + 1 children,
and regarding weight, we have the “umbral evolution” (here W is the fixed part of the weight, that
does not change):

Wxj1
1 xj2

2 znA[2, 1] → Wt321zA[2, 1]

(
j1∑

i=1

xi
1x

j1+1
2

)
zn

+Wt312zA[1, 2]

 j2∑
i=j1+1

xj1
1 xi

2

 zn

+Wt213zA[1, 2]

 n+1∑
i=j2+1

xj1
1 xi

2

 zn

Taking out whatever we can out of the
∑

-signs, we have:

Wxj1
1 xj2

2 znA[2, 1] → Wt321zA[2, 1]

(
j1∑

i=1

xi
1

)
xj1+1

2 zn

+Wt312zA[1, 2]

 j2∑
i=j1+1

xi
2

xj1
1 zn

+Wt213zA[1, 2]

 n+1∑
i=j2+1

xi
2

xj1
1 zn .

Now summing up the geometrical series, using the ancient formula:

b∑
i=a

Zi =
Za − Zb+1

1− Z
,

we get

Wxj1
1 xj2

2 znA[2, 1] → Wt321zA[2, 1]

(
x1 − xj1+1

1

1− x1

)
xj1+1

2 zn

+Wt312zA[1, 2]

(
xj1+1

2 − xj2+1
2

1− x2

)
xj1

1 zn

+Wt213zA[1, 2]

(
xj2+1

2 − xn+2
2

1− x2

)
xj1

1 zn
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This is the same as:

Wxj1
1 xj2

2 znA[2, 1] → Wt321zA[2, 1]

(
x1x

j1+1
2 − xj1+1

1 xj1+1
2

1− x1

)
zn

+Wt312zA[1, 2]

(
xj1

1 xj1+1
2 − xj1

1 xj2+1
2

1− x2

)
zn

+Wt213zA[1, 2]

(
xj1

1 xj2+1
2 − xj1

1 xn+2
2

1− x2

)
zn

The above evolution can be expressed for a general monomial M(x1, x2, z) as:

M(x1, x2, z)A[2, 1] → t321zA[2, 1]
(

x1x2M(x2, 1, z)− x1x2M(x1x2, 1, z)
1− x1

)

+t312zA[1, 2]
(

x2M(x1x2, 1, z)− x2M(x1, x2, z)
1− x2

)
+t213zA[1, 2]

(
x2M(x1, x2, z)− x2

2M(x1, 1, x2z

1− x2

)
.

But by linearity this means that the coeff. of A[2,1] (the weight-enumerator of all permutations of
state [2, 1] obeys the evolution equation:

f21(x1, x2, z)A[2, 1] → t321zA[2, 1]
(

x1x2f21(x2, 1, z)− x1x2f21(x1x2, 1, z)
1− x1

)

+t312zA[1, 2]
(

x2f21(x1x2, 1, z)− x2f21(x1, x2, z)
1− x2

)
+t213zA[1, 2]

(
x2f21(x1, x2, z)− x2

2f21(x1, 1, x2z)
1− x2

)
.

Combining we have the “evolution”:

f12(x1, x2, z)A[1, 2] + f21(x1, x2, z)A[2, 1] →

t231zA[2, 1]
(

x1x2f12(1, x2, z)− x1x2f12(x1, x2, z)
1− x1

)
+t132zA[2, 1]

(
x1x2f12(x1, x2, z)− x1x2f12(1, x1x2, z)

1− x1

)
+t123zA[1, 2]

(
x2f12(1, x1x2, z)− x2

2f12(1, x1, x2z)
1− x2

)
.

+t321zA[2, 1]
(

x1x2f21(x2, 1, z)− x1x2f21(x1x2, 1, z)
1− x1

)
+t312zA[1, 2]

(
x2f21(x1x2, 1, z)− x2f21(x1, x2, z)

1− x2

)
8



+t213zA[1, 2]
(

x2f21(x1, x2, z)− x2
2f21(x1, 1, x2z)

1− x2

)
.

Now the “evolved” (new) f12(x1, x2, z) and f21(x1, x2, z) are the coeff. of A[1, 2], A[2, 1] respectively,
and since the “initial weight of both” of them is x1x

2z2, we have the established the following system
of functional equations:

f12(x1, x2, z) = x1x
2
2z

2+

t123z

(
x2f12(1, x1x2, z)− x2

2f12(1, x1, x2z)
1− x2

)
+

+t312z

(
x2f21(x1x2, 1, z)− x2f21(x1, x2, z)

1− x2

)

+t213z

(
x2f21(x1, x2, z)− x2

2f21(x1, 1, x2z)
1− x2

)
,

and
f21(x1, x2, z) = x1x

2
2z

2+

t231z

(
x1x2f12(1, x2, z)− x1x2f12(x1, x2, z)

1− x1

)
+t132z

(
x1x2f12(x1, x2, z)− x1x2f12(1, x1x2, z)

1− x1

)
+t321z

(
x1x2f21(x2, 1, z)− x1x2f21(x1x2, 1, z)

1− x1

)
.

Let the computer do it!

All the above was only done for pedagogical reasons. The computer can do it all auomatically,
much faster and more reliably. Now of we want to find functional equations for the number of
permumations avoiding a given set of consecutive patterns P, all we have to do is plug-in tp = 0
for pinP and tp = 1 for p 6∈ P. This gives a polynomial-time algorithm for computing any desired
number of terms. This is all done automatically in the Maple package SERGI. See the webpage of
this article for lots of sample input and output.

Outline of the Negative Approach (According to Brian Nakamura)

Suppose that we want to compute fast the first 100 terms (or whatever) of the sequence enumerating
n-permutations avoiding the pattern 12 . . . 20. Using the “positive” approach, we would need to set-
up a system of functional equations with 19! power-series! While the algorithm is still polynomial
in n, it is not very practical! (This is yet another illustation why the ruling paradigm in theoretical
computer science, of equating “polynomial time” with “fast” is absurd).

This is analogous to computing words in a finite alphabet, say of a letters, avoiding a given word
(or words) as factors (consecutive subwords). If the word-to-avoid has length k, then the naive
transfer-matrix method would require to set-up a system of ak−1 equations and ak−1 unknowns.
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The elegant and powerful Goulden-Jackson method [GJ1][GJ2], beautifully exposited and extended
in [NZ], and even further extended in [KY] enables to do it with just solving one equation and one
unknown. We assume that the reader is familiar with it, and briefly describe the analog for the
present problem, where the alphabet is “infinite”. This is also the approach pursued in the beautiful
human-generated papers [DK] and [KS]. I repeat that the focus and novelty in the present work
of my students (and most of my work in at least the last ten years) is in automating enumeration
(and the rest of mathematics), and the current topic of consecutive pattern-avoidance is used as a
case-study.

One again, in order to illustate the method. I will use two specific, simple examples, (the patterns
321 and 231 already considered, using human ingenuity, in the pioneering paper [EN].) The general
algorithm, written in Maple, is contained in the Maple package ELIZALDE. Out of laziness, so far,
I only treat single patterns, but Brian Nakaumra’s [N] work deals with the general case.

But first generalities. For the sake of exposition, focusing on a single pattern p (the case of several
patterns is analogous, see [DK]).

Using the inclusion-exclusion “negative” philosophy for counting, Fix a pattern p. For any n-
permutation, let Pattp(π) be the set of occurrences of the pattern p in π. For example

Patt123(179234568) = {179, 234, 345, 456, 568} ,

Patt231(179234568) = {792} ,

Patt312(179234568) = {923} ,

Patt132 = Patt213 = Patt321 = ∅ .

consider the much larger set of pairs

{(π, S)|S is a a subset of Pattp(π)}

set of all permutations of length n, and define a new weight weight(π) := (t−1)#occurrencesofthepatternp.
For example, the
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