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Abstract

John von Neumann studied a simplified version of poker where the “deck” consists
of infinitely many cards, in fact, all real numbers between 0 and 1. We harness the
power of computation, both numeric and symbolic, to investigate analogs with
finitely many cards. We also study finite analogs of a simplified poker introduced
by D.J. Newman, and conclude with a thorough investigation, fully implemented
in Maple, of the three-player game, doing both the finite and the infinite versions.
This paper is accompanied by two Maple packages and numerous output files;
however, no knowledge of Maple is needed, as all relevant information is provided
within the paper.
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1 Prelude

Welcome to the world of poker, where strategy and probability rule. Picture yourself
at the poker table, every decision a crucial step toward victory or defeat. Poker has
intrigued mathematicians for decades as a window into decision-making and game
theory. Pioneers like Émile Borel, John von Neumann, Harold W. Kuhn, John Nash,
and Lloyd Shapley ([1],[8],[4],[6]) who believed that real-life scenarios mirror poker
with their elements of bluffing and strategic thinking, have simplified the complexities
of the game, making it tractable for game theoretic analysis.

Quick Refresher: Game Theory

In game theory, a game refers to any situation where players make decisions that
result in outcomes based on the choices of all involved. A strategy is a complete plan of
action a player will follow in various situations throughout the game. A pure strategy
is a strategy in which a player makes a specific choice or takes a specific action with
certainty whenever a particular situation arises in the game. When players use a mixed
strategy, they randomize over possible moves, assigning a probability to each move,
instead of choosing a single, deterministic action. A Nash Equilibrium (NE) occurs
when no player can benefit from changing their strategy while the other players keep
theirs unchanged. A mixed Nash Equilibrium is a type of NE where at least one player
uses a mixed strategy, ensuring no player can improve their payoff by individually
changing their strategy.

von Neumann Poker

Fig. 1 The betting tree and Nash equilibrium strategies for von Neumann Poker

In the original version [8], von Neumann proposed, and solved, the following game
of poker with an uncountably infinite deck, namely all the real numbers between 0
and 1. Fix a bet size, b. Player I and Player II are dealt (uniformly at random) two
“cards”, real numbers x and y, in the interval [0, 1]. They each see their own card, but
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have no clue about the opponent’s card. At the start they each put one dollar into the
pot (the so called ante), so now the pot has two dollars.

Figure 1 illustrates the “betting tree” of this game. Here, Player I looks at his card,
and decides whether to check, in which case each of the players shows their cards,
and whoever has the largest card wins the pot. On the other hand he has an option
to bet, putting b additional dollars in the pot. Now the game turns to Player II. She
can decide to fold, in which case player I gets the pot, resulting in a gain of 1 dollar
for Player I, (and a loss of 1 dollar for player II), or be brave and call, putting her
own b dollars into the pot, that now has 2b+ 2 dollars. The cards are compared in a
showdown and whoever has the larger card, wins the whole pot, resulting in a gain of
b+ 1 dollars for the winner, and a loss of b+ 1 for the loser.

von Neumann proved that the following pair of strategies is a pure Nash Equilib-
rium, i.e. if the players both follow their chosen strategy, neither of them can do better
(on average) by doing a different strategy.

The von Neumann advice

von Neumann identified the cuts A,B and C in the right panel of Figure 1, and
proposed the following strategies.

• Player I: If 0 < x <
b

(b+ 4) (b+ 1)
or

b2 + 4b+ 2

(b+ 4) (b+ 1)
< x < 1 you should bet,

otherwise check.

• Player II: If 0 < y <
b (b+ 3)

(b+ 4) (b+ 1)
you should fold, otherwise call.

Note that Player II’s strategy corresponds to honest common sense, there is some
cut-off that below it you should be conservative, and “cut your losses” giving up the
one dollar, and not risking losing b additional dollars, and above it, be brave, and go
for it.

Now an honest common sense would tell you that Player I would also have his own
cutoff, check if his card is below it, and bet if it exceeds it. But this is not optimal. If
Player I has a low card, he should bluff, and ‘pretend’ that he has a high card, and
player II would be intimidated into folding.

Sad but true, “honesty is not the best policy”. Indeed the game favors Player I,

and his expected gain is
b

(b+ 4) (b+ 1)
.

When b = 2, the advice spells out as follows:
• Player I: if 0 < x < 1

9 or 7
9 < x < 1 you should bet, otherwise check.

• Player II: If 0 < y < 5
9 you should fold, otherwise call.

The expected value, i.e. the value of the game (for Player I) is 1
9 . It can be shown that

b = 2 maximizes Player I’s payoff under the Nash equilibrium strategies.

Finitely Many Cards

What we don’t like about the original von Neumann version is that the deck is infi-
nite. In real life there are only finitely many cards, and in fact, not that many. We
were wondering whether there exists pure Nash equilibria when there are only finitely
many cards. Before we dive into the world of finite poker, interested readers can find
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detailed implementations of this work in the Maple package: https://sites.math.rutgers.

edu/∼zeilberg/tokhniot/FinitePoker.txt, along with an expanded version of the current
work from a computational perspective in [3].

Finding all pure NEs via von Neumann’s Minimax Theorem

Let n ≥ 2 be a fixed positive integer representing the number of cards in the deck,
numbered 1, 2, . . . , n. Additionally, let b ≥ 1 be a fixed positive integer denoting the
bet size. In this section, we aim to identify the set of all pure Nash equilibria for a
given pair (n, b), which, as we will see, may occasionally be empty (hereafter, we use
NE to refer to Nash Equilibrium).

As we did not make any assumptions about ‘plausible’ strategies, a priori, a strat-
egy for Player I can be any subset, S1, of {1, . . . , n}, that advises: ‘If your card belongs
to S1 you should bet, otherwise, check’. Similarly a strategy for Player II, S2, can
be any such subset, that tells her to call iff her card j ∈ S2. We then construct the
paytable, which is a 2n × 2n payoff matrix. The smallest payoff matrix of size 4× 4 for
a bet size b = 2 and n = 2 cards is given in Figure 2.

To solve for a pure Nash equilibrium in our finite poker game, it is fitting to revisit
John von Neumann’s minimax theorem, first published in 1928 [7]. This theorem
remains a cornerstone of game theory to this day, and it is a privilege to apply his
celebrated result to solve the finite version of his poker model.

In the context of a two-player zero-sum game, given a payoff matrix, the theorem
states that if the row maximin equals the column minimax, a pure Nash equilibrium
(or saddle point) is guaranteed to exist. In particular, at an equilibrium strategy pair
[S1, S2], Player I (the row player) aims to maximize their worst possible payoff, while
Player II (the column player) seeks to minimize Player I’s best payoff. The value of
the game (the expected gain of Player I and the corresponding loss of Player II) is the
outcome at this equilibrium pair, representing the optimal result for both players.

However, if these values do not coincide, the equilibrium will typically involve
mixed strategies, where both players randomize their decisions. A historical note
related to this: Von Neumann and Morgenstern showed that, for a zero-sum game,
there must always exist at least one mixed Nash equilibrium, as demonstrated in their
1944 book Theory of Games and Economic Behavior [8]. In 1950, John Nash general-
ized this concept in his paper Non-Cooperative Games [5] to the non-zero-sum game.
We will talk about mixed NEs later on. But for now, let’s explore the pure ones.

Referring back to Figure 2, for the payoff matrix when the bet size is b = 2 and
we have only 2 cards, the value of the row maximin equals the column minimax, both
being 0, at two pairs [S1, S2] of pure Nash equilibria:

[{}, {2}] and [{2}, {2}].
In both of them Player II calls if her card is 2 and folds if her card is 1, while Player
I always checks in the first strategy, and checks if his card is 1 in the second strategy.
This is not very interesting, since the value of the the game is 0.

Fixing the bet size to 2 and setting n = 3 cards (so the payoff matrix is now 8× 8)
is, frankly, a bit dull, as it leads to just two trivial pairs of pure NEs: [ϕ, {3}] and
[{3}, {3}]. Increasing the number of cards to 4, 5, or even 6 (while the size of the payoff
matrix grows exponentially) doesn’t add much excitement—they’re all empty, as the
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Fig. 2 Payoff matrix for n = 2 and b = 2, along with the values of the row minima and column
maxima

value of the row maximin does not equal the column minimax, resulting in no pure
NEs.

But now comes a nice surprise, with 7 cards, we get not one, not two, but three
pure, non-trivial Nash equilibria! In all of them, Player I bets if their card is in {1, 6, 7},
while Player II calls if her card belongs to any of the following sets: {3, 6, 7}, {4, 6, 7},
or {5, 6, 7}. The value of the game is 2

21 .
So with 7 cards we already have bluffing! If Player I has the card labeled 1, he

should bet even though he would definitely lose the bet if Player II calls.
Moving right along, with 8 cards, we also get three pure NEs. For all of them

Player I bets iff his card belongs to {1, 7, 8}, but Player II calls if her card is in either
{4, 7, 8}, {5, 7, 8}, or {6, 7, 8}. The value of the game is 3

28 , getting tantalizingly close
to von Neumann’s 1

9 .
Since the sizes of the payoff matrices grow exponentially, and we did not make

any plausibility assumptions, there is only so far we can go with this naive vanilla
approach. But nine cards are still doable. Indeed there are seven pure NEs in this case.
For all of them S1 = {1, 8, 9}, but Player II has seven choices, all with four members,
including, of course, {6, 7, 8, 9}.

To overcome the exponential explosion, we can stipulate that Player I’s strategy
must be of the form:

“Check iff i ∈ {A,A+ 1, . . . , B} for some 1 ≤ A < B ≤ n, ”
while Player II’s must be of the form:
“Call iff j ∈ {C,C + 1, . . . , n} for some 1 ≤ C ≤ n.”
Now we can go much further, which leads to a nice result: If n is a multiple of 9

then the (restricted) pure NEs are as expected, namely the value of the game is 1
9 and

the strategy for player I is: check if 1
9n < i ≤ 7

9n, bet otherwise and for Player II: call
iff j > 5

9n.
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If n is not a multiple of 9, then the values are close, but a little less. For example
for n = 26 the value is 36

325 = 0.110769. For n = 25, the value is 11
100 = 0.11.

2 Mixed NEs via Linear Programming

The study of mixed strategies in two-person zero-sum games can be elegantly formu-
lated as a primal-dual linear programming (LP) problem. A mixed strategy involves
each player choosing optimal actions according to a probability distribution, introduc-
ing uncertainty. An equilibrium solution to this dual pair of linear programs reveals
optimal mixed strategies (mixed NE) for both players.

Slow LPs for mixed NE

Recall our scenario: the pot starts at 1+1, with only Player I able to bet a fixed amount
b. Given the 2n by 2n payoff matrix (mij) as input, Player I aims to maximize his worst-
case expected gain, minimizing over all possible actions of Player II. This objective
is framed as an LP by introducing variable v1 to represent this minimum, ensuring
Player I’s expected gain is at least v1 for every action of Player II, and maximizing v1.
Similarly, from Player II’s viewpoint, the goal is to minimize her worst-case expected
loss, maximizing over all actions of Player I. This involves introducing variable v2 to
represent this maximum, and setting the objective to minimize v2.

To formulate the primal-dual LP, let x = (x1, . . . , x2n) be the mixed strategy
probability of Player I to maximize v1. Let y = (y1, . . . , y2n) be the mixed strategy
probability of Player II to minimize v2.

Primal: Maximize v1

s.t.

2n∑
i=1

xi ·mij ≥ v1 for j = 1, ..., 2n

2n∑
i=1

xi = 1

xi ≥ 0 for i = 1, ..., 2n.

Dual: Minimize v2

s.t.

2n∑
j=1

mij · yj ≤ v2 for i = 1, ..., 2n

2n∑
j=1

yj = 1

yj ≥ 0 for j = 1, ..., 2n.

By the minimax theorem at an equilibrium, v1 = v2 = v∗, which represents the
value of the game.

For example, with n = 4 cards and a bet size b = 2, one can set up a 16×16 payoff
matrix and solve above LPs for a mixed strategy NE, resulting in the following:

• Player I has two strategies: (1.1) with probability 1/2, bet if his card is 4 and
fold if his card is 1, 2, or 3; and (1.2) with probability 1/2, bet if his card is 1 or
4, and fold if his cards are 2 or 3.

• Player II has two strategies: (2.1) with probability 1/2, call if her card is 4 and
fold if her card is 1, 2, or 3; and (2.2) with probability 1/2, call if her cards are
2 or 4, and fold if her cards are 1 or 3.

• The value of the game is 1
12 .
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However, due to the exponentially large size of the matrix, practical limitations
arise, preventing us from considering more than 6-7 cards without the inconvenience
of reducing the dominated rows and columns of the payoff matrix.

Fast LPs for mixed NE

The NE can be considered from a different perspective, where focusing on the specific
card each player receives reduces the number of constraints from exponential to linear.

A strategy for Player I is given by a vector P = [p1, . . . , pn] that tells him: if his
card is i, bet with probability pi, and check with probability 1− pi.

A strategy for Player II is given by a vector Q = [q1, . . . , qn] that tells her: if her
card is j, call with probability qj , and fold with probability 1− qj .

Before we discuss the Fast LP formulation, let’s mention that given card-by-card
strategies, P and Q, it is easy to compute the expected payoff (for Player I), as a
bilinear form in the pi’s and qj ’s:

Payoff(n, b,P,Q) =
1

n(n− 1)

(
n∑

i=1

i−1∑
j=1

(1− pi) −
n∑

i=1

n∑
j=i+1

(1− pi) +

n∑
i=1

i−1∑
j=1

pi(1− qj)

+

n∑
i=1

n∑
j=i+1

pi(1− qj) + (b+ 1)

n∑
i=1

i−1∑
j=1

piqj − (b+ 1)

n∑
i=1

n∑
j=i+1

piqj

)
.

Let’s now get back to the Fast LP for Player I, which contains two sets of con-
straints. Each set corresponds to the expected payoff (over distribution P), conditioned
on the card that Player II has and whether she calls or folds:

Maximize
1

n

n∑
j=1

vj

s.t.
1

n− 1

∑
i ̸=j

(Call(i, j, b+ 1) · pi + Call(i, j, 1) · (1− pi)) ≥ vj j = 1, . . . , n (Player II calls)

1

n− 1

∑
i ̸=j

(pi + Call(i, j, 1) · (1− pi)) ≥ vj j = 1, . . . , n (Player II folds)

0 ≤ pi ≤ 1 i = 1, . . . , n, (VN-I)

where the procedure Call(i, j, R) is defined based on whether the card i is larger than
card j or not:

Call(i, j, R) =

{
R if i > j

−R if i < j.

Similarly, for the Fast LP for Player II, the constraints are calculated based on
the expected loss (over distribution Q), conditioned on the card that Player I has and
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whether he bets or checks:

Minimize
1

n

n∑
i=1

vi

s.t.
1

n− 1

∑
j ̸=i

(Call(i, j, b+ 1) · qj + (1− qj)) ≤ vi i = 1, . . . , n (Player I bets)

1

n− 1

∑
j ̸=i

Call(i, j, 1) ≤ vi i = 1, . . . , n (Player I checks)

0 ≤ qj ≤ 1 j = 1, . . . , n. (VN-II)

Now things get interesting much sooner. Even with just three cards, we already
have bluffing! With a bet size of 1 (note the difference in bet size from the usual b = 2),
the results are as follows:

• Player I’s strategy is: If your card is 1, bet with probability 1
3 and check with

probability 2
3 . If your card is 2 then definitely check, while if your card is 3

then you should definitely bet.
• Player II’s strategy is: If your card is 1, definitely fold, if your card is 2, call with
probability 1

3 and fold with probability 2
3 , while if your card is 3 then definitely

call.
• The value of the game is 1

18 ≈ 0.055555 . . . .
So already with three cards, Player I should sometimes bluff if his card is 1, but only
with probability 1

3 .
Note that a pure Nash equilibrium is also a mixed one, and indeed, in some cases,

we obtain pure Nash equilibria. For example, with n = 18 cards and b = 2, the result
is as follows:

• Player I: Bet iff your card is in {1, 2, 15, 16, 17, 18}.
• Player II: Call iff your card is in {11, . . . , 18}.
• The value of the game is 1

9 ≈ 0.111111111 . . . .
Beyond the results obtained for the more realistic scenario of finitely many cards

and their computational efficiency of the Fast LP model, our findings provide crucial
insights into the continuous case, shedding light on why Player I’s Nash equilibrium
strategy in von Neumann’s poker follows the pattern depicted in Figure 1: bluffing
when his card is small.

3 DJ Newman Poker

Not as famous as John von Neumann, but at least as brilliant, is Donald J. Newman,
the third person to be Putnam fellow in three consecutive years. He was a good friend
of John Nash. In a fascinating four-page paper [9] in Operations Research, he proposed
his own version of poker, where the bet size is not fixed, but can be decided by Player
I, including betting 0, that is the same as checking.

In his own words (now the players are A and B) :
A and B each ante 1 dollar and are each dealt a ‘hand,’ namely a randomly

chosen real number in (0, 1). Each sees his, but not the opponent’s hand. A bets
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any amount he chooses (≥ 0); B ‘sees’ him (i.e. calls, betting the same amount) or
folds. The payoff is as usual.

The DJ Newman advice

The betting tree and Nash equilibrium strategies are the same as those in von Neu-
mann Poker, as shown in Figure 1. However, Player I is allowed to bet with different
positive amounts.

• Player I

Fig. 3 Relation between the value of the card x and the optimal bet size R for Player I

Case 1: For a given card x < A = 1
7 , Player I should bet an amount R that

satisfies the relation:

x =
1

7
− R2(R+ 6)

7(R+ 2)3
=

4(3R+ 2)

7(R+ 2)3
.

Case 2: For a given card 1
7 = A < x < B = 4

7 , Player I should check.
Case 3: For a given card x > B = 4

7 , Player I should bet an amount R that
satisfies the relation:

x =
R2 + 4R+ 2(1/7) + 2

(R+ 2)2
=

7R2 + 28R+ 16

7(R+ 2)2
.

• Player II
In response to a bet amount R > 0 from player I, player II should fold if her card

y < C and call if y > C, where

C =
R+ 2(1/7)

R+ 2
=

7R+ 2

7R+ 14
.

The value of the game (for Player I) is 1
7 . (This is higher than

1
9 in von Neumann’s

game, as Player I has more freedom to bet.) The detailed calculation of this result
can be found in Newman’s original paper [9], or check our supplementary material at
https://thotsaporn.com/SupplementN.pdf.
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Fig. 4 Relation between the amount of bet R and the value of the card C that is sufficient to call
the bet for Player II

Finitely Many Cards

But in real life, there is always a finite number of cards, and no one can bet arbitrarily
large amounts. Once again, we focus on the finite deck version, which is set up as
follows: The inputs are integers n ≥ 2 and b ≥ 1, where each player is dealt a different
card from {1, . . . , n}, and Player I’s decision, upon seeing his card i, is to choose an
amount s from {0, . . . , b} to bet, where s = 0 corresponds to checking.

In this game the number of strategies are even larger, and we will not bother with
the ‘vanilla’ approach to find pure NEs. Instead, we will look for (Fast LP) mixed
strategies right away.

Player I’s payoff maximization

Player I’s strategy space consists of n × (b + 1) matrix, (pi[s]), where pi[s] (1 ≤ i ≤
n, 0 ≤ s ≤ b) is the probability that if he has card i, he would bet s dollars (of
course, the row-sums should add-up to 1). The LP formulation is analogous to that of
(VN-I) in the previous section. Let’s point out the differences to gain some insights.
Recall that each constraint corresponds to the card that Player II has and her choice
of action. In (VN-I), Player II can either call or fold, and she can have one of the n
cards. Hence, there are a total of 2n constraints.

In our current scenario, however, Player II’s decision depends on both her card and
Player I’s proposed bet amount s. Let Sb := {0, . . . , b}. We define P(Sb) as the set
containing all possible strategies of Player II regarding whether to call or fold. That
is, each Y ∈ P(Sb) represents a strategy where Player II will call if s ∈ Y . Therefore,
for a fixed card j and strategy Y ∈ P(Sb) of Player II, the constraint is: “Player II
calls if she holds card j and the proposed bet amount s ∈ Y ; otherwise, she folds.” The
total number of these constraints amounts to n · 2b.

For example, when b = 4,

P(S4) ={{0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 2, 3}, {0, 2, 4}
{0, 3, 4}, {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 2, 3, 4}, {0, 1, 2, 3, 4}}.
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With this setup, we derive the following LP:

Maximize
1

n

n∑
j=1

vj

s.t.
1

n− 1

∑
i ̸=j

∑
s∈Y

Call(i, j, s+ 1) · pi[s] +
∑

s∈(Sb\Y )

pi[s]

 ≥ vj j = 1, . . . , n; Y ∈ P(Sb)︸ ︷︷ ︸
total n·2b constraints

b∑
s=0

pi[s] = 1, i = 1, . . . , n

pi[s] ≥ 0, s = 0, . . . , b; i = 1, . . . , n (DJN-I)

Player II’s loss minimization

While Player’s II’s strategy is also an n× (b+ 1) matrix, formulating the LP is much
simpler. Let’s denote the matrix by (qj [s]) where qj [s] is the probability of calling
if her card is j and the bet proposed by Player I is s (and as usual 1 − qj [s] is
the corresponding probability of folding). In this case, there are a total of n(b + 1)
constraints (not exponential as in the case of Player I). Also, the LP formulation
straightforwardly extends from (VN-II):

Minimize
1

n

n∑
i=1

vi

s.t.
1

n− 1

∑
j ̸=i

(Call(i, j, s+ 1) · qj [s] + (1− qj [s])) ≤ vi s = 0, . . . , b; i = 1, . . . , n︸ ︷︷ ︸
total n(b+1) constraints

qj [0] = 1 j = 1, . . . , n

0 ≤ qj [s] ≤ 1 s = 0, . . . , b; j = 1, . . . , n. (DJN-II)

For example, for the game with n = 7 cards and the maximum bet size b = 3, the

value of this game is
13

105
= 0.1238095238, which is still less than

1

7
= 0.1428571429

(due to the limitation of the maximum bet amount). Optimal strategies for both
players are given by the following matrices:

(
p∗i [s]

)
7×4

=



1
15

1
3 0 3

5
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1


(
q∗j [s]

)
7×4

=



1 0 0 0
1 0 0 0
1 0 0 0

1 1 1
10 0

1 1 1 2
5

1 1 1 1
1 1 1 1


.

We will now interpret the optimal strategies of Players I and II through the
obtained p∗i [s] and q∗j [s]. For Player I, if he holds card 1, his optimal bet amounts will

be 0, 1, 2, and 3, with corresponding probabilities of 1
15 ,

1
3 , 0,

3
5 , respectively. If his
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Fig. 5 Three-player poker. Left: The betting tree. Right: Conjectured Nash equilibrium strategies
for a continuous deck.

card falls between 2 and 5, he will always check. If his card is 6, he will bet 1 with
certainty, and if his card is 7, he will place the maximum bet of 3.

On the other hand, to interpret Player II’s strategy, we examine the matrix q∗j [s]
column by column, corresponding to the proposed bet amounts by Player I. In response
to Player I’s actions: if Player I checks (i.e., proposes a bet amount of 0), Player II
will always call, which corresponds to ones in the first column. If Player I bets 1 (as
in column 2), Player II will fold if her card is less than 4 and call otherwise. A similar
interpretation can be made for the remaining columns.

We noticed that for any given n, there exists a maximal bet size after which the
game has the same value. As n grows larger, and b reaches its saturation value, the
value of the game seems to converge to the DJ Newman ‘continuous’ value 1

7 .

4 Three-player Poker Game

As early as 1950, future Economics Nobelists, John Nash and Lloyd Shapley [6], pio-
neered the analysis of a three-player poker game. They explored a simplified version
where the deck contains only two kinds of cards, High and Low, in equal numbers.
However, today, eighty years after von Neumann’s analysis of poker, the dynamics of
the three-player game therein remain unexplored. We now take the opportunity to
analyze these dynamics in both their finite and infinite versions.

Finite deck

The three players each put 1 dollar into the pot. Player I acts first, choosing either to
check or to bet a fixed integer amount b > 0. If Player I checks, the three hands are
immediately compared, and the player with the highest hand wins the pot. However,
if Player I bets, Players II and III have two choices: call or fold. The reader is invited
to refer to the left panel of Figure 5, which depicts the betting tree for three players.
(The right panel shows the conjectured Nash equilibrium strategies to be used in the
next section for the continuous version of the game.)
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Assume we are given three-dimensional payoff matrices (Ml, l = 1, 2, 3) for the
three players:

Ml =
(
ml

ijk

)
,

where i, j, k = 1, 2, . . . , 2n.
While its counterpart two-player game can be solved using linear programming,

here we require nonlinear programming (NLP) [2]. The NLP formulation for the three-
player game closely follows the LP model for the two players discussed in the previous
section. Each player aims to minimize their expected loss, or the expected gain of the
other players. For instance, given Player I’s payoff matrix M1, the other two players
attempt to minimize the maximum potential loss incurred due to Player I’s choices.
This involves constraints that utilize matrix M1 and the probability distributions
y = (y1, . . . , y2n) and z = (z1, . . . , z2n) of Players II and III. These are embedded in
the first set of constraints in the NLP formulation, which we will now formulate.

The Slow NLP for three players is given by:

Minimize

3∑
l=1

vl

s.t.

2n∑
j,k=1

m1
ijk · yj · zk ≤ v1 for i = 1, 2, ..., 2n

2n∑
i,k=1

m2
ijk · xi · zk ≤ v2 for j = 1, 2, ..., 2n

2n∑
i,j=1

m3
ijk · xi · yj ≤ v3 for k = 1, 2, ..., 2n

2n∑
i=1

xi = 1,

2n∑
j=1

yj = 1,

2n∑
k=1

zk = 1

xi, yj , zk ≥ 0 for i, j, k = 1, 2, ..., 2n.

Note that if there are only two players, zk in the above NLP formulation disappears,
and the constraint functions become linear in the variables xi and yj . Thus, the prob-
lem can be decomposed into two separate LP (primal-dual) problems, as discussed
earlier.

We now shift our focus to the Fast NLP formulation for three players, which aligns
with the Fast LP formulation for two players, considering on the card each player
receives. Recall a strategy for Player I is given by a vector P = [p1, . . . , pn], indicating
that if his card is i, he bets with probability pi, and checks with probability 1 − pi.
A strategy for Player II is given by a vector Q = [q1, . . . , qn], indicating that if her
card is j, she calls with probability qj , and folds with probability 1− qj . Similarly, a
strategy for Player III is represented by a vector R = [r1, . . . , rn], following the same
interpretation as Player II.
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We first define two procedures:
• Call2 is used to calculate the payoff if either Player II or Player III decides to
fold, leaving only two players (one of whom is Player I) to compare their cards.
Let us assume that Player III folds. Then,

Call2(i, j, R) =

{
R+ 1 if i > j

−R if i < j.

• Call3 is used to calculate the payoff when all the three players are comparing
their cards:

Call3(i, j, k, R) =

{
2R if i > j and i > k

−R if i < j or i < k.

The Fast NLP contains three sets of constraints, one set for each player, correspond-
ing to the expected payoff over the pairs of distributions Q−R, P −R, or P −Q.
For each player l = 1, 2, 3, there are two sets of constraints depending on the card that
Player l has and whether they follow their first strategy or the second strategy:

Minimize
1

n

n∑
c=1

v1c +
1

n

n∑
c=1

v2c +
1

n

n∑
c=1

v3c

subject to

1

(n− 1)(n− 2)

∑
j ̸=i

∑
k ̸=i,j

Call3(i, j, k, 1) ≤ v1i i = 1, . . . , n (Player I checks)

1

(n− 1)(n− 2)

(∑
j ̸=i

∑
k ̸=i,j

Call3(i, j, k, b+ 1) · qk · rk

+ Call2(i, j, b+ 1) · qj · (1− rk) + Call2(i, k, b+ 1) · (1− qj) · rk

+ 2(1− qj) · (1− rk)

)
≤ v1i i = 1, . . . , n (Player I bets)

1

(n− 1)(n− 2)

∑
i ̸=j

∑
k ̸=i,j

(−pi + Call3(j, i, k, 1) · (1− pi)) ≤ v2j j = 1, . . . , n

(Player II folds)

1

(n− 1)(n− 2)

(∑
i ̸=j

∑
k ̸=i,j

Call3(j, i, k, b+ 1) · pi · rk
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+ Call2(j, i, b+ 1) · pi · (1− rk) + Call3(j, i, k, 1) · (1− pi)

)
≤ v2j j = 1, . . . , n

(Player II calls)

1

(n− 1)(n− 2)

∑
i ̸=k

∑
j ̸=i,k

(−pi + Call3(k, i, j, 1) · (1− pi)) ≤ v3k k = 1, . . . , n

(Player III folds)

1

(n− 1)(n− 2)

(∑
i ̸=k

∑
j ̸=i,k

Call3(k, i, j, b+ 1) · pi · qj

+ Call2(k, i, b+ 1) · pi · (1− qj) + Call3(k, i, j, 1) · (1− pi)

)
≤ v3k k = 1, . . . , n

(Player III calls)

0 ≤ pi, qj , rk ≤ 1 i, j, k = 1, . . . , n.

Here, we assume that Players II and III adopt identical strategies. For example,
with bet size 1 and n = 4, we obtain the following results.

• Player I’s strategy is: If your card is 1, bet with probability of 2
3 and check with

probability 1
3 . If your card is 2 or 3, then definitely checks; if your card is 4,

definitely bet.
• Player II’s and III’s strategies are: If their card is 1 or 2, they definitely fold. If
their card is 3, they call with probability of 1

4 and fold with probability 3
4 . If their

card is 4, they definitely call.
• The value of the game (for Player 1) is 1

24 , while for Players II and III are − 1
48

each.
As a final remark, our model is a direct extension of von Neumann’s two-player

finite poker payoff matrix to three players, where Players II and III react to Player I,
sharing identical strategies and payoffs. Therefore, it does not quite reflect a real 3-
player poker game, where Player III gains an advantage from sequential play. However,
sequential play could be incorporated by expanding Player III’s strategies to account
for Player II’s potential call or fold. While this would complicate the payoff matrix, it
is feasible.

Extension of von Neumann’s continuous model to three players

As you may recall, we introduced this work with von Neumann’s concept of an
uncountably infinite deck, contrasting it with the finite nature of real-world card
games. We proceeded by solving the finite deck games for two players and extended
our analysis to include three players. Now that we have solved the finite version, the
solutions effortlessly transition us to the continuous version of the three-player game,
as we will demonstrate—a fitting conclusion to our study.
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As in the von Neumann model for two players, each of the three players contributes
1 dollar to the pot and receives independent uniform(0,1) hands. As a reminder, Player
I has the option to check or bet a fixed amount b, while Players II and III can only
call or fold. The betting tree remains the same as that of the finite deck model. The
conjectured Nash equilibrium strategies for three players, guided by the data generated
from the finite deck model, are illustrated in the right panel of Figure 5. Please scroll
up a few pages.

Our advice

For numbers A,B,C, yet to be determined,
• Player I: If 0 < x < A or B < x < 1 he should bet, otherwise check.
• Players II and III: If 0 < y < C they should fold, otherwise call.
To solve for the Nash equilibrium strategies, we apply the Principle of Indifference,

which states that in mixed strategy Nash equilibria, players are indifferent between
pure strategies as they yield the same expected payoff. This principle guides the solu-
tion for the three-player game: Players II and III adjust their strategies (y and z) to
make Player I indifferent between his pure strategies. Similarly, Players I and III adjust
their strategies to make Player II indifferent between her pure strategies, and so on.

Assume 0 < A < C < B. We now determine the cut points A, B, and C by solving
three indifference equations as follows.
1. For Player I to be indifferent at A:

(a) If Player I checks at x = A, his expected payoff is

A∫
0

A∫
0

2dzdy +

A∫
0

1∫
A

−1dzdy +

1∫
A

1∫
0

−1dzdy

(b) If Player I bets at x = A, his expected payoff is

C∫
0

C∫
0

2dzdy +

C∫
0

1∫
C

−(b+ 1)dzdy +

1∫
C

1∫
0

−(b+ 1)dzdy

Equating the two expressions above yields the following equation:

3A2 − 1 = 3C2 + bC2 − b− 1. (Eq. A)

2. For Player I to be indifferent at B:
(a) If Player I checks at x = B, his expected payoff is

B∫
0

B∫
0

2dzdy +

B∫
0

1∫
B

−1dzdy +

1∫
B

1∫
0

−1dzdy
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(b) If Player I bets at x = B, his expected payoff is

C∫
0

C∫
0

2dzdy +

C∫
0

B∫
C

(b+ 2)dzdy +

B∫
C

C∫
0

(b+ 2)dzdy +

B∫
C

B∫
C

2(b+ 1)dzdy

+

1∫
B

B∫
0

−(b+ 1)dzdy +

B∫
0

1∫
B

−(b+ 1)dzdy +

1∫
B

1∫
B

−(b+ 1)dzdy

Equating the two expressions above yields the following equation:

3B2 − 1 = −2bCB + 3bB2 + 3B2 − b− 1. (Eq. B)

3. For Player II (or Player III) to be indifferent at C:
Assuming Player I bets:

(a) If Player II folds at y = C, her expected payoff is

A∫
0

1∫
0

−1dzdx+

1∫
B

1∫
0

−1dzdx

(b) If Player II calls at y = C, her expected payoff is

A∫
0

C∫
0

(b+ 2)dzdx+

A∫
0

1∫
C

−(b+ 1)dzdx+

1∫
B

1∫
0

−(b+ 1)dzdx

Equating the two expressions above yields the following equation:

−A+B − 1 = 2bCA+ 3CA− bA−A− b+ bB +B − 1. (Eq. C)

Solving the above non-linear system of three equations in three unknowns gives
us the solutions for A,B and C for the Nash equilibrium strategies.

In particular, when b = 2, the optimal cuts are

A = 0.137058194328370

B = 0.829422249795391

C = 0.641304115985175.

This results in the value of the game (for Player I) being 0.122557074714865.
We can also determine the best bet amount b, that maximizes Player I’s payoff

under the Nash equilibrium strategies. Approximately, b∗ ≈ 2.07, resulting in Player
I achieving a maximum payoff of 0.122590664136184. Therefore, we observe that the
highest payoff for Player I in the three-player game exceeds that of the von Neumann’s
two-player game, which is 1/9 = 0.111111 achieved at b∗ = 2.

One final remark is that the Nash equilibrium for the three-player continuous game
resembles those observed in the discrete model when n is large. In our experiments
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with the finite deck model, we we are able to simulate up to n = 65. With b = 2, we
obtain the following results:

• The cuts are: A = (8 + 14/23) /65 = 0.132441471571906

B = 1− 11/65 = 0.830769230769231

C = 1− (22 + 189/205) /65 = 0.647354596622889.

• The value of the game (for Player I) is 974
8121 = 0.119935968476789.

The authors stand in front of John von Neumann’s former residence at 26 Westcott Road, Princeton.

The photo, taken on May 31, 2024, was courtesy of Karen Reid, the current owner.
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