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Von Neumann and Newman Pokers 
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W elcome to the world of poker, where 
strategy and probability rule. Picture 
yourself at the poker table, every 
decision a crucial step toward vic-
tory or defeat. Poker has intrigued 
mathematicians for decades as a 

window into decision-making and game theory. Pioneers 
like Émile Borel, John von Neumann, Harold W. Kuhn, 
John Nash, and Lloyd Shapley [1, 4, 6, 8], who believed 
that real-life scenarios mirror poker with their elements 
of bluffing and strategic thinking, have simplified the 
complexities of the game, making it tractable for game-
theoretic analysis.

A Quick Game Theory Refresher
In game theory, a game refers to a situation in which 
players make decisions that result in outcomes based on 
the choices of all involved. A strategy is a complete plan 
of action that a player will follow in various situations 
throughout the game. A pure strategy is a strategy in 
which a player makes a specific choice or takes a specific 
action with certainty whenever a particular situation arises 
in the game. When players use a mixed strategy, instead 
of choosing a single, deterministic action, they randomize 
over possible moves, assigning a probability to each move. 
A Nash equilibrium occurs when no player can benefit 
from changing their strategy while the other players keep 
theirs unchanged. A mixed Nash equilibrium is a type of 
Nash equilibrium such that at least one player uses a mixed 
strategy, ensuring that no player can improve their payoff 
by individually changing their strategy.

Von Neumann Poker
In its original version [8], von Neumann (see Figure 1) 
proposed and solved the following game of poker with an 
uncountably infinite deck containing all the real numbers 
between 0 and 1. Fix a bet size b. Player I and Player II are 
dealt (uniformly at random) two “cards,” real numbers x 
and y, in the interval [0, 1]. They each see their own card 
but have no clue about the opponent’s card. At the start, 
they each put one dollar (the ante) into the pot. So now the 
pot has two dollars.

Figure 2 illustrates the “betting tree” of this game. 
Here, Player I looks at his card and decides whether to 
call “check,” in which case each player shows their card 
and whoever has the larger card wins the pot. On the 

other hand, he has the option to place a bet, putting 
b additional dollars in the pot. Now the game turns to 
Player II. She can decide to fold, in which case player I 
gets the pot, gaining one dollar (with a loss of one dollar 
for player II), or she could be brave and call, putting her 
own b dollars into the pot, which now has 2b + 2 dollars. 
The cards are compared in a showdown, and whoever has 
the higher card wins the whole pot, resulting in a gain 
of b + 1 dollars for the winner and a loss of b + 1 for the 
loser.

John von Neumann proved that the following pair of 
strategies is a pure Nash equilibrium, i.e., if each player 
follows their chosen strategy, neither of them can do better 
(on average) by adopting a different strategy.

The von Neumann Advice
Von Neumann identified the cuts A, B, C in the right panel 
of Figure 2 and proposed the following strategies:

•	 Player I: If 

 bet; otherwise, check.
•	 Player II: If 

 fold; otherwise, call.

Note that Player II’s strategy corresponds to common 
sense: there is some cutoff below which one should be con-
servative and cut your losses, giving up the one dollar and 
not risking losing b additional dollars, and above which one 
should be brave and go for it.

Now, common sense might also tell you that Player I 
should also have his own cutoff, checking if his card is be-
low it and betting if it exceeds it. But this is not the optimal 
strategy. If Player I has a low card, he should bluff, acting 
as though he had a high card, thereby intimidating player 
II into folding. Sad but true, honesty is not always the best 
policy. Indeed, the game favors Player I, whose expected 
gain is

0 < x <
b

(b + 4)(b + 1)
or

b2 + 4b + 2

(b + 4)(b + 1)
< x < 1,

0 < y <
b(b + 3)

(b + 4)(b + 1)
,

b

(b + 4)(b + 1)
.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00283-025-10420-2&domain=pdf
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When the bet size b equals 2, the advice spells out as 
follows:

•	 Player I: if 0 < x < 1∕9 or 7∕9 < x < 1, bet; otherwise, 
check.

•	 Player II: If 0 < y < 5∕9, fold; otherwise, call.

The expected value for Player I, i.e., the value of the game, 
is 1/9. It can be shown that b = 2 maximizes Player I’s pay-
off under the Nash equilibrium strategies.

Finitely Many Cards
What we don’t like about von Neumann’s original version is 
that the deck is infinite. In real life, decks have only finitely 
many cards, and in fact, not that many. We were wondering 
whether there exist pure Nash equilibria when there are 
only finitely many cards.1

Finding all pure Nash equilibria via von Neumann’s 
minimax theorem. Let n ≥ 2 be a fixed positive integer 
representing the number of cards in the deck, numbered 
1, 2,… , n. Additionally, let b ≥ 1 be a fixed positive integer 
denoting the bet size. In this section, we aim to identify the 

set of all pure Nash equilibria for a given pair (n, b), which, 
as we will see, may occasionally be empty.

Since we did not make any a priori assumptions about 
plausible strategies, a strategy for Player I can be any 
subset S1 of {1,… , n} that states, “If your card belongs to 
S1, you should bet; otherwise, check.” Similarly, a strategy 
S2 for Player II can be any such subset that tells her to call 
if and only if her card j is in S2. We then construct a pay 
table, which is a 2n × 2n payoff matrix. The smallest payoff 
matrix of size 4 × 4 for a bet size b = 2 and n = 2 cards is 
given in Figure 3.

To solve for a pure Nash equilibrium in our finite poker 
game, it is fitting to revisit John von Neumann’s minimax 
theorem, first published in 1928 [7]. This theorem remains a 
cornerstone of game theory to this day, and it is a privilege 
to apply von Neumann’s celebrated result to solve the finite 
version of his poker model.

In the context of a two-player zero-sum game, given a 
payoff matrix, the theorem states that if the row maximin 
equals the column minimax, then a pure Nash equilibrium 
(or saddle point) is guaranteed to exist. In particular, at an 
equilibrium strategy pair [S1, S2], Player I (the row player) 
aims to maximize his worst possible payoff, while Player II 
(the column player) seeks to minimize Player I’s best payoff. 
The value of the game (the expected gain of Player I and 
the corresponding loss of Player II) is the outcome at this 
equilibrium pair, representing the optimal result for both 
players.

However, if these values do not coincide, the equilib-
rium will typically involve mixed strategies, whereby 
both players randomize their decisions. Here is a historical 
note related to this: von Neumann and Oskar Morgenstern 
showed that for a zero-sum game, there must always exist 
at least one mixed Nash equilibrium, as demonstrated in 
their 1944 book Theory of Games and Economic Behavior [8]. 

Figure 1.   The authors stand in front of John von Neumann’s 
former residence at 26 Westcott Road, Princeton, New Jersey. 
The photo, taken on May 31, 2024, is courtesy of Karen Reid, 
the current owner.

Figure 2.   The betting tree and Nash equilibrium strategies 
for von Neumann poker.

Figure 3.   Payoff matrix for n = 2 and b = 2 along with the 
values of the row minima and column maxima.

1Before diving into the world of finite poker, the interested reader can find detailed implementations of this work in the Maple 
package available at https://​sites.​math.​rutge​rs.​edu/​~zeilb​erg/​mamar​im/​mamar​imhtml/​poker.​html, which also includes links to 
numerous output files, as well as an expanded version of the current work from a computational perspective in [3].

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/poker.html
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In 1950, John Nash generalized this concept in his paper 
“Non-Cooperative Games” [5] to the non-zero-sum game.

We will talk about mixed Nash equilibria later on. But 
for now, let’s explore the pure ones. Referring to Figure 3, 
we see that for the payoff matrix when the bet size is b = 2 
and we have only two cards, the value of the row maximin 
equals the column minimax, both being 0, at two pairs 
[S1, S2] of pure Nash equilibria:

In both of them, Player II calls if her card is 2 and folds if 
her card is 1, while Player I always checks in the first strat-
egy, and checks if his card is 1 in the second strategy. This 
is not very interesting, since the value of the game is 0.

Fixing the bet size at 2 and setting n = 3 cards (so the 
payoff matrix is now 8 × 8 ) is, frankly, a bit dull, since it 
leads to just two trivial pairs of pure Nash equilibria: [�, {3}] 
and [{3}, {3}] . Increasing the number of cards to four, five, 
or even six (while the size of the payoff matrix grows expo-
nentially) doesn’t add much excitement—they are all empty, 
since the value of the row maximin does not equal the col-
umn minimax, resulting in no pure Nash equilibria.

But now comes a nice surprise. With seven cards, we get 
not one, not two, but three pure, nontrivial Nash equilib-
ria! In all of them, Player I bets if his card is in {1, 6, 7}, 
while Player II calls if her card belongs to any of the follow-
ing sets: {3, 6, 7}, {4, 6, 7}, {5, 6, 7}. The value of the game 
is 2/21. So with seven cards, we already have bluffing! If 
Player I has the card labeled 1, he should bet even though 
he will definitely lose the bet if Player II calls.

Moving right along, with eight cards, we also get three 
pure Nash equilibria. For all of them, Player I bets iff his 
card belongs to {1, 7, 8} , but Player II calls if her card is in 
one of {4, 7, 8} , {5, 7, 8} , {6, 7, 8} . The value of the game is 
3/28, getting tantalizingly close to von Neumann’s 1/9.

Since the sizes of the payoff matrices grow exponen-
tially and we did not make any plausibility assumptions, 
we can go only so far with this naive “vanilla” approach. 
But nine cards are still doable. Indeed, there are seven 
pure Nash equilibria in this case. For all of them, we have 
S1 = {1, 8, 9} , but Player II has seven choices, all with four 
members, including, of course, {6, 7, 8, 9}.

To overcome the exponential explosion, we can stipu-
late that Player I’s strategy must be of the form “Check iff 
i ∈ {A,A + 1,… ,B} for some 1 ≤ A < B ≤ n ,” while Player 
II’s must be of the form “Call iff j ∈ {C,C + 1,… , n} for 
some 1 ≤ C ≤ n.”

Now we can go much further, which leads to a nice 
result: If n is a multiple of 9, then the (restricted) pure Nash 
equilibria are as expected. Namely, the value of the game is 
1/9 and the strategy for player I is to check if

and bet otherwise, while for Player II it is call iff

[{}, {2}] and [{2}, {2}].

1

9
n < i ≤ 7

9
n

j >
5

9
n.

If n is not a multiple of 9, then the values are close, 
but a little less so. For example, for n = 26, the value is 
36∕325 = 0.110769. For n = 25, the value is 11∕100 = 0.11.

Mixed Nash Equilibria via Linear 
Programming
The study of mixed strategies in two-person zero-sum games 
can be elegantly formulated as a primal–dual linear program-
ming (LP) problem. A mixed strategy involves each player 
choosing optimal actions according to a probability distribu-
tion, introducing uncertainty. An equilibrium solution to this 
dual pair of linear programs reveals optimal mixed strategies 
(mixed Nash equilibria) for both players.

Slow linear programming for mixed Nash equilibria. 
Recall our scenario: the pot starts at 1 + 1, with only Player 
I able to bet a fixed amount b. Given the 2n × 2n payoff 
matrix (mij) as input, Player I aims to maximize his 
worst-case expected gain, minimizing over all possible 
actions of Player II. This objective is framed as a linear 
programming problem by introducing the variable v1 to 
represent this minimum, ensuring that Player I’s expected 
gain is at least v1 for every action of Player II, and maxi-
mizing v1 . Similarly, from Player II’s viewpoint, the goal is 
to minimize her worst-case expected loss, maximizing over 
all actions of Player I. This involves introducing the 
variable v2 to represent this maximum and setting the 
objective to minimize v2.

To formulate the primal–dual linear programming prob-
lem, let � =

(
x1,… , x2n

)
 be the mixed strategy probability 

of Player I to maximize v1 . Let � =
(
y1,… , y2n

)
 be the mixed 

strategy probability of Player II to minimize v2.

Primal: Maximize v1 such that

Dual: Minimize v2 such that

By the minimax theorem, at an equilibrium, we have 
v1 = v2 = v∗ , which represents the value of the game. For 
example, with n = 4 cards and a bet size b = 2 , one can set 
up a 16 × 16 payoff matrix and solve the above linear pro-
gramming problems for a mixed-strategy Nash equilibrium, 
resulting in the following:

2n∑
i=1

xi ⋅mij ≥ v1 for j = 1,… , 2n,

2n∑
i=1

xi = 1, s.t. xi ≥ 0 for i = 1,… , 2n.

2n∑
j=1

mij ⋅ yj ≤ v2 for i = 1,… , 2n,

2n∑
j=1

yj = 1, s.t. yj ≥ 0 for j = 1,… , 2n.
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•	 Player I has two strategies: (1.1) with probability 1∕2 , 
bet if his card is 4 and fold if his card is 1, 2, or 3; and 
(1.2) with probability 1∕2 , bet if his card is 1 or 4, and 
fold if his card is 2 or 3.

•	 Player II has two strategies: (2.1) with probability 1∕2 , call 
if her card is 4 and fold if her card is 1, 2, or 3; and (2.2) 
with probability 1∕2 , call if her card is 2 or 4, and fold if 
her card is 1 or 3.

•	 The value of the game is 1∕12.

However, due to the exponentially large size of the matrix, 
practical limitations arise that prevent us from considering 
more than six or seven cards without the inconvenience of 
reducing the dominated rows and columns of the payoff 
matrix.

Fast linear programming problem for mixed Nash 
equilibria. The Nash equilibrium can be considered 
from a different perspective, where focusing on the spe-
cific card each player receives reduces the number of con-
straints from exponential to linear. A strategy for Player 
I is given by a vector P = [p1,… , pn] that tells him that 
if his card is i, bet with probability pi , and check with 
probability 1 − pi . A strategy for Player II is given by a 
vector Q = [q1,… , qn] that tells her that if her card is j, 
call with probability qj and fold with probability 1 − qj.

Before we discuss the fast linear programming formula-
tion, let us mention that given card-by-card strategies P 
and Q , it is easy to compute the expected payoff (for Player 
I) as a bilinear form in the pi and qj:

Let us now return to the fast linear programming prob-
lem for Player I, which contains two sets of constraints. 
Each set corresponds to the expected payoff (over distri-
bution P) , conditioned on the card that Player II has and 
whether she calls or folds:

������(n, b,P,Q)

=
1

n(n − 1)

( n∑
i=1

i−1∑
j=1

(1 − pi) −

n∑
i=1

n∑
j=i+1

(1 − pi)

+

n∑
i=1

i−1∑
j=1

pi(1 − qj) +

n∑
i=1

n∑
j=i+1

pi(1 − qj)

+ (b + 1)

n∑
i=1

i−1∑
j=1

piqj − (b + 1)

n∑
i=1

n∑
j=i+1

piqj

)
.

(VN-I)

Maximize
1

n

n∑
j=1

vj s.t.

1

n − 1

∑
i≠j

(
����(i, j, b + 1) ⋅ pi + ����(i, j, 1) ⋅ (1 − pi)

) ≥ vj,

j = 1,… , n, (Player II calls)

1

n − 1

∑
i≠j

(
pi + ����(i, j, 1) ⋅ (1 − pi)

) ≥ vj

j = 1,… , n, (Player II folds)

0 ≤ pi ≤ 1, i = 1,… , n,

where the procedure ����(i, j,R) is defined based on 
whether the card i is larger than card j:

Similarly, for the fast linear programming problem for 
Player II, the constraints are calculated based on the ex-
pected loss (over the distribution Q) , conditioned on the 
card that Player I has and whether he bets or checks:

Now things get interesting much sooner. Even with 
just three cards, we already have bluffing! With a bet size 
of 1 (note the difference in bet size from the usual b = 2 ), 
the results are as follows:

•	 Player I’s strategy is if his card is 1, bet with probability 
1/3 and check with probability 2/3. If his card is 2, then 
definitely check, while if it is 3, then he should defi-
nitely bet.

•	 Player II’s strategy is if her card is 1, definitely fold, while 
if it is 2, call with probability 1/3 and fold with probabil-
ity 2/3, while if the card is 3, then definitely call.

•	 The value of the game is 1∕18 = 0.055555… .

So already with three cards, Player I should sometimes 
bluff if his card is 1, but only with probability 1/3.

Note that a pure Nash equilibrium is also a mixed one, 
and indeed, in some cases, we obtain pure Nash equilib-
ria. For example, with n = 18 cards and b = 2 , the result 
is as follows:

•	 Player I: Bet iff your card is in {1, 2, 15, 16, 17, 18}.
•	 Player II: Call iff your card is in {11,… , 18}.
•	 The value of the game is 1

9
≈ 0.111111111… .

Beyond the results obtained for the more realistic scenario 
of finitely many cards and their computational efficiency 
of the fast linear programming model, our findings provide 
crucial insights into the continuous case, shedding light on 
why Player I’s Nash equilibrium strategy in von Neumann’s 
poker follows the pattern depicted in Figure 2: bluffing 
when his card is small.

D. J. Newman Poker
Not as famous as John von Neumann, but at least as bril-
liant, is Donald J. Newman, the third person to be a Putnam 
fellow in three consecutive years. He was a good friend of 

����(i, j,R) =

{
R if i > j,
−R if i < j.

(VN-II)

Minimize
1

n

n∑
i=1

vi s.t.

1

n − 1

∑
j≠i

(
����(i, j, b + 1) ⋅ qj + (1 − qj)

) ≤ vi,

i = 1,… , n, (Player I bets)

1

n − 1

∑
j≠i

����(i, j, 1) ≤ vi i = 1,… , n, (Player I checks)

0 ≤ qj ≤ 1, j = 1,… , n.
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John Nash. In a fascinating four-page paper [9] in Operations 
Research, he proposed his own version of poker in which the 
bet size is not fixed but can be decided by Player I, including 
betting 0, which is the same as checking.

In his own words (now the players are A and B):

A and B each ante 1 dollar and are each dealt a “hand,” 
namely a randomly chosen real number in (0, 1). Each 
sees his, but not the opponent’s, hand. A bets any 
amount he chooses ( ≥ 0 ); B “sees” him (i.e., calls, bet-
ting the same amount) or folds. The payoff is as usual.

The D. J. Newman Advice
The betting tree and Nash equilibrium strategies are the 
same as those in von Neumann Poker, as shown in Figure 2. 
However, Player I is allowed to bet with different positive 
amounts.

Player I’s strategy is as follows (see also Figure 4).

•	 Case 1: For a given card x < A = 1∕7 , Player I should bet 
an amount R that satisfies the relation 

•	 Case 2: For a given card 1∕7 = A < x < B = 4∕7 , Player I 
should check.

•	 Case 3: For a given card x > B = 4∕7 , Player I should bet 
an amount R that satisfies the relation 

And here is Player II’s strategy (see also Figure 5). In response 
to a bet amount R > 0 from Player I, Player II should fold if 
her card satisifes y < C and call if y > C , where

The value of the game (for Player I) is 1∕7 . (This is 
greater than 1∕9 in von Neumann’s game, since Player I has 
more freedom to bet.) The detailed calculation of this result 
can be found in Newman’s original paper [9], or check our 
supplementary material at https://​thots​aporn.​com/​Suppl​
ementN.​pdf.

x =
1

7
−

R2(R + 6)

7(R + 2)3
=

4(3R + 2)

7(R + 2)3
.

x =
R2 + 4R + 2(1∕7) + 2

(R + 2)2
=

7R2 + 28R + 16

7(R + 2)2
.

C =
R + 2( 1

7
)

R + 2
=

7R + 2

7R + 14
.

Finitely Many Cards
But in real life, there is always a finite number of cards, and 
no one can bet arbitrarily large amounts. Once again, we 
focus on the finite-deck version, which is set up as follows: 
The inputs are integers n ≥ 2 and b ≥ 1 , where each player 
is dealt a different card from {1,… , n} , and Player I’s deci-
sion, on seeing his card i, is to choose an amount s to bet 
from {0,… , b} , where s = 0 corresponds to checking.

In this game, the number of strategies is even larger, 
and we will not bother with the vanilla approach to find 
pure Nash equilibria. Instead, we will look for (fast linear 
programming) mixed strategies right away.

Player I’s payoff maximization. Player I’s strategy 
space consists of an n × (b + 1) matrix 

(
pi[s]

)
 , where pi[s] 

( 1 ≤ i ≤ n , 0 ≤ s ≤ b ) is the probability that if he has card 
i, he will bet s dollars (of course, the row sums should add 
up to 1). The linear programming formulation is analogous 
to that of (VN-I) in the previous section. Let us point out 
the differences to gain some insights. Recall that each con-
straint corresponds to the card that Player II has and her 
choice of action. In (VN-I), Player II can either call or fold, 
and she can have one of the n cards. Hence, there is a total 
of 2n constraints.

In our current scenario, however, Player II’s decision de-
pends on both her card and Player I’s proposed bet amount s. 
Let Sb ∶= {0,… , b} . We define P(Sb) as the set containing all 
possible strategies for Player II regarding whether to call or 
fold. That is, each Y ∈ P(Sb) represents a strategy whereby 
Player II will call if s ∈ Y . Therefore, for a fixed card j and 
strategy Y ∈ P(Sb) of Player II, the constraint is that Player II 
will call if she holds card j and the proposed bet amount s is 
in Y; otherwise, she folds. The total number of these con-
straints is n ⋅ 2b.

For example, when b = 4 , we have

With this setup, we derive the following linear program-
ming problem:

P(S4) = {{0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 1, 2}, {0, 1, 3},

{0, 1, 4}, {0, 2, 3}, {0, 2, 4}, {0, 2, 3, 4}, {0, 1, 2, 3, 4}

{0, 3, 4}, {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}}.

Figure 4.   Relation between the value of the card x and the 
optimal bet size R for Player I.

Figure 5.   Relation between the amount of bet R and the value 
of the card C that is sufficient to call the bet for Player II.

https://thotsaporn.com/SupplementN.pdf
https://thotsaporn.com/SupplementN.pdf
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Player II’s loss minimization. While Player’s II’s strat-
egy is also an n × (b + 1) matrix, formulating the linear 
programming problem is much simpler. Let’s denote the 
matrix by (qj[s]) , where qj[s] is the probability of Player II’s 
calling if her card is j and the bet proposed by Player I is s 
(and as usual, 1 − qj[s] is the corresponding probability of 
folding). In this case, there is a total of n(b + 1) constraints 
(not exponential, as in the case of Player I). Also, the LP 
formulation straightforwardly extends from (VN-II):

For example, for the game with n = 7 cards and 
the maximum bet size b = 3 , the value of this game 
is 13∕105 = 0.1238095238 , which is still less than 
1∕7 = 0.1428571429 (due to the limitation of the maximum 
bet amount). Optimal strategies for both players are given 
by the following matrices:

We will now interpret the optimal strategies of Players I 
and II through the obtained p∗

i
[s] and q∗

j
[s] . For Player I, if 

he holds card 1, his optimal bet amounts will be 0, 1, 2, and 
3, with corresponding probabilities of 1∕15, 1∕3, 0, 3∕5 , 
respectively. If his card falls between 2 and 5, he will 
always check. If his card is 6, he will bet 1 with certainty, 
and if his card is 7, he will place the maximum bet of 3.

(DJN-I)

Maximize
1

n

n∑
j=1

vj s.t.

1

n − 1

∑
i≠j

(∑
s∈Y

����(i, j, s + 1) ⋅ pi[s] +
∑

s∈(Sb⧵Y)

pi[s]

)
≥ vj,

j = 1,… , n; Y ∈ P(Sb)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

total n⋅2b constraints

,

b∑
s=0

pi[s] = 1, i = 1,… , n,

pi[s] ≥ 0, s = 0,… , b; i = 1,… , n.

(DJN-II)

Minimize
1

n

n∑
i=1

vi s.t.

1

n − 1

∑
j≠i

(
����(i, j, s + 1) ⋅ qj[s] + (1 − qj[s])

) ≤ vi,

s = 0,… , b; i = 1,… , n
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

total n(b+1) constraints

,

qj[0] = 1, j = 1,… , n,

0 ≤ qj[s] ≤ 1, s = 0,… , b; j = 1,… , n.

�
p∗i [s]

�
7×4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

15

1

3
0 3

5
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
�
q∗j [s]

�
7×4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 0 0
1 0 0 0

1 1 1

10
0

1 1 1 2

5
1 1 1 1
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

On the other hand, to interpret Player II’s strategy, we 
examine the matrix q∗

j
[s] column by column, corresponding 

to the proposed amounts bet by Player I. In response to 
Player I’s actions, if Player I checks (i.e., proposes a bet 
amount of 0), Player II will always call, which corresponds 
to ones in the first column. If Player I bets 1 (as in column 
2), Player II will fold if her card is less than 4 and call 
otherwise. A similar interpretation can be made for the 
remaining columns.

We noticed that for any given n, there exists a maximal 
bet size after which the game has the same value. As n 
grows larger and b reaches its saturation value, the value of 
the game seems to converge to the D. J. Newman “continu-
ous” value 1/7.

A Three‑Player Poker Game
As early as 1950, future economics Nobel laureates John Nash 
and Lloyd Shapley [6] pioneered the analysis of a three-player 
poker game. They explored a simplified version in which 
the deck contains only two kinds of cards, High and Low, in 
equal numbers. Today, however, eighty years after von Neu-
mann’s analysis of poker, the dynamics of this three-player 
game remain unexplored. We now take the opportunity 
to analyze these dynamics in both their finite and infinite 
versions.

A Finite Deck
The three players each put one dollar into the pot. Player I 
acts first, choosing either to check or to bet a fixed integer 
amount b > 0 . If Player I checks, the three hands are imme-
diately compared, and the player with the highest hand wins 
the pot. However, if Player I bets, Players II and III have two 
choices: call or fold. The reader is invited to refer to the left 
panel of Figure 6, which depicts the betting tree for three 
players. (The right panel shows the conjectured Nash equilib-
rium strategies to be used in the next section for the continu-
ous version of the game.)

Assume that we are given three-dimensional payoff matri-
ces 

(
Ml, l = 1, 2, 3

)
 for the three players:

where i, j, k = 1, 2,… , 2n.

Ml =
(
ml

ijk

)
,

Figure 6.   Three-player poker. Left: the betting tree. Right: 
conjectured Nash equilibrium strategies for a continuous deck.
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While its counterpart two-player game can be solved us-
ing linear programming, here we require nonlinear program-
ming (NLP) [2]. The NLP formulation for the three-player 
game closely follows the LP model for the two players dis-
cussed in the previous section. Each player aims to minimize 
their expected loss or the expected gain of the other players. 
For instance, given Player I’s payoff matrix M1, the other 
two players attempt to minimize the maximum potential loss 
incurred due to Player I’s choices. This involves constraints 
that utilize matrix M1 and the probability distributions 
� =

(
y1,… , y2n

)
 and � =

(
z1,… , z2n

)
 of Players II and III. 

These are embedded in the first set of constraints in the NLP 
formulation, which we will now formulate.

The slow NLP for three players is given by

Note that if there are only two players, then zk in the above 
NLP formulation disappears, and the constraint functions 
become linear in the variables xi and yj. Thus, the problem 
can be decomposed into two separate LP (primal–dual) 
problems, as discussed earlier.

We now shift our focus to the fast NLP formulation for 
three players, which aligns with the fast LP formulation for 
two players, considering the card that each player receives. 
Recall that a strategy for Player I is given by a vector 
P = [p1,… , pn], indicating that if his card is i, he bets with 
probability pi and checks with probability 1 − pi . A strat-
egy for Player II is given by a vector Q = [q1,… , qn], indi-
cating that if her card is j, she calls with probability qj and 
folds with probability 1 − qj. Similarly, a strategy for Player 
III is represented by a vector R = [r1,… , rn], following the 
same interpretation as Player II’s stragegy.

We first define two procedures:

•	 Call2 is used to calculate the payoff if either Player II 
or Player III decides to fold, leaving only two players 
(one of whom is Player I) to compare their cards. Let us 
assume that Player III folds. Then 

Minimize

3∑
l=1

vl s.t.

2n∑
j,k=1

m1
ijk ⋅ yj ⋅ zk ≤ v1 for i = 1, 2,… , 2n,

2n∑
i,k=1

m2
ijk ⋅ xi ⋅ zk ≤ v2 for j = 1, 2,… , 2n,

2n∑
i,j=1

m3
ijk ⋅ xi ⋅ yj ≤ v3 for k = 1, 2,… , 2n,

2n∑
i=1

xi = 1,

2n∑
j=1

yj = 1,

2n∑
k=1

zk = 1,

xi, yj, zk ≥ 0 for i, j, k = 1, 2,… , 2n.

�����(i, j,R) =

{
R + 1 if i > j,
−R if i < j.

•	 Call3 is used to calculate the payoff when all three 
players compare their cards: 

The fast NLP contains three sets of constraints, one set for 
each player, corresponding to the expected payoff over the 
pairs of distributions Q—R,P—R,P—Q. For each player 
l = 1, 2, 3 , there are two sets of constraints depending on 
the card that Player l has and whether they follow their first 
strategy or the second strategy:

subject to

�����(i, j, k,R) =

{
2R if i > j and i > k,
−R if i < j or i < k.

Minimize
1

n

n∑
c=1

v1c +
1

n

n∑
c=1

v2c +
1

n

n∑
c=1

v3c

(Player I checks)

1

(n − 1)(n − 2)

∑
j≠i

∑
k≠i,j

�����(i, j, k, 1) ≤ v1i , i = 1,… , n,

(Player I bets)

1

(n − 1)(n − 2)

(∑
j≠i

∑
k≠i,j

�����(i, j, k, b + 1) ⋅ qk ⋅ rk

+ �����(i, j, b + 1) ⋅ qj ⋅ (1 − rk) + �����(i, k, b + 1) ⋅ (1 − qj) ⋅ rk

+ 2(1 − qj) ⋅ (1 − rk)

)
≤ v1i , i = 1,… , n,

(Player II folds)

1

(n − 1)(n − 2)

∑
i≠j

∑
k≠i,j

(
−pi + �����(j, i, k, 1) ⋅ (1 − pi)

) ≤ v2j ,

j = 1,… , n,

(Player II calls)

1

(n − 1)(n − 2)

(∑
i≠j

∑
k≠i,j

�����(j, i, k, b + 1) ⋅ pi ⋅ rk

+ �����(j, i, b + 1) ⋅ pi ⋅ (1 − rk) + �����(j, i, k, 1) ⋅ (1 − pi)

)
≤ v2j ,

j = 1,… , n,

(Player III folds)

1

(n − 1)(n − 2)

∑
i≠k

∑
j≠i,k

(
−pi + �����(k, i, j, 1) ⋅ (1 − pi)

) ≤ v3k,

k = 1,… , n,

(Player III calls)

1

(n − 1)(n − 2)

(∑
i≠k

∑
j≠i,k

�����(k, i, j, b + 1) ⋅ pi ⋅ qj

+ �����(k, i, b + 1) ⋅ pi ⋅ (1 − qj)

+ �����(k, i, j, 1) ⋅ (1 − pi)

)
≤ v3k, k = 1,… , n,
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for 0 ≤ pi, qj, rk ≤ 1 , i, j, k = 1,… , n.
Here we assume that Players II and III adopt identi-

cal strategies. For example, with bet size 1 and n = 4 , we 
obtain the following results.

•	 Player I’s strategy is if his card is 1, bet with probability 
2/3 and check with probability 1/3. If his card is 2 or 3, 
then definitely check; if his card is 4, definitely bet.

•	 The strategies of Players II and III are if their card is 1 or 
2, they definitely fold. If their card is 3, they call with 
probability 1/4 and fold with probability 3/4. If their card 
is 4, they definitely call.

•	 The value of the game (for Player 1) is 1/24, while for 
each of Players II and III it is −1∕48.

As a final remark, our model is a direct extension of von 
Neumann’s two-player finite poker payoff matrix to three 
players, where Players II and III react to Player I, sharing 
identical strategies and payoffs. Therefore, it does not quite 
reflect a real three-player poker game, in which Player III 
would gain an advantage from sequential play. However, 
sequential play could be incorporated by expanding Player 
III’s strategies to account for Player II’s potential call or 
fold. While this would complicate the payoff matrix, it is 
feasible.

Extension of von Neumann’s Continuous Model 
to Three Players
As you may recall, we introduced this article with von 
Neumann’s concept of an uncountably infinite deck, con-
trasting it with the finite nature of real-world card games. 
We proceeded by solving the finite-deck games for two 
players and extended our analysis to include three play-
ers. Now that we have solved the finite version, the solu-
tions effortlessly transition us to the continuous version 
of the three-player game, as we will demonstrate, giving 
us a fitting conclusion to our study.

As in the von Neumann model for two players, each 
of the three players contributes one dollar to the pot and 
receives independent uniform(0, 1) hands. As a reminder, 
Player I has the option to check or bet a fixed amount b, 
while Players II and III can only call or fold. The betting 
tree remains the same as that for the finite-deck model. 
The conjectured Nash equilibrium strategies for three 
players, guided by the data generated from the finite-
deck model, are illustrated in the right panel of Figure 6.

Our Advice. For numbers A, B, C, yet to be determined,

•	 Player I: If 0 < x < A or B < x < 1 , bet; otherwise, 
check.

•	 Players II and III: If 0 < y < C , fold; otherwise, call.

To solve for the Nash equilibrium strategies, we apply 
the principle of indifference, which states that in mixed 
strategy Nash equilibria, players are indifferent between 
pure strategies, since they yield the same expected 

payoff. This principle guides the solution of the three-
player game: Players II and III adjust their strategies ( y 
and z ) to make Player I indifferent between his pure strat-
egies. Similarly, Players I and III adjust their strategies 
to make Player II indifferent between her pure strategies, 
and so on.

Assume 0 < A < C < B . We now determine the cut 
points A, B, and C by solving three indifference equations 
as follows.

1. For Player I to be indifferent at A: 

1.	 If Player I checks at x = A, his expected payoff is 

2.	 If Player I bets at x = A, his expected payoff is 

Equating the two expressions above yields the following 
equation:

2. For Player I to be indifferent at B: 

1.	 If Player I checks at x = B , his expected payoff is 

2.	 If Player I bets at x = B , his expected payoff is 

Equating the two expressions above yields the following 
equation:

3. For Player II (or Player III) to be indifferent at C: 
Assuming Player I bets: 

A

∫
0

A

∫
0

2dz dy +

A

∫
0

1

∫
A

−1dz dy +

1

∫
A

1

∫
0

−1dz dy.

C

∫
0

C

∫
0

2dz dy +

C

∫
0

1

∫
C

−(b + 1)dz dy +

1

∫
C

1

∫
0

−(b + 1)dz dy.

3A2 − 1 = 3C2 + bC2 − b − 1.

B

∫
0

B

∫
0

2dz dy +

B

∫
0

1

∫
B

−1dz dy +

1

∫
B

1

∫
0

−1dz dy.

C

∫
0

C

∫
0

2dz dy +

C

∫
0

B

∫
C

(b + 2)dz dy +

B

∫
C

C

∫
0

(b + 2)dz dy

+

B

∫
C

B

∫
C

2(b + 1)dz dy

+

1

∫
B

B

∫
0

−(b + 1)dz dy +

B

∫
0

1

∫
B

−(b + 1)dz dy

+

1

∫
B

1

∫
B

−(b + 1)dz dy.

3B2 − 1 = −2bCB + 3bB2 + 3B2 − b − 1.
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1.	 If Player II folds at y = C , her expected payoff is 

2.	 If Player II calls at y = C , her expected payoff is 

Equating the two expressions above yields the following 
equation:

Solving the above nonlinear system of three equations in 
three unknowns gives us the solutions for A, B, and C for 
the Nash equilibrium strategies.

In particular, when b = 2 the optimal cuts are

This results in the value of the game (for Player I) being 
0.122557074714865.

We can also determine the best bet amount b that 
maximizes Player I’s payoff under the Nash equilibrium 
strategies. Approximately, b∗ ≈ 2.07, resulting in Player I 
achieving a maximum payoff of 0.122590664136184. There-
fore, we observe that the highest payoff for Player I in the 
three-player game exceeds that of von Neumann’s two-play-
er game, which is 1∕9 = 0.111111… , achieved at b∗ = 2.

One final remark is that the Nash equilibrium for the 
three-player continuous game resembles those observed in 

A

∫
0

1

∫
0

−1dz dx +

1

∫
B

1

∫
0

−1dz dx.

A

∫
0

C

∫
0

(b + 2)dz dx +

A

∫
0

1

∫
C

−(b + 1)dz dx +

1

∫
B

1

∫
0

−(b + 1)dz dx.

−A + B − 1 = 2bCA + 3CA − bA − A − b + bB + B − 1.

A = 0.137058194328370,

B = 0.829422249795391,

C = 0.641304115985175.

the discrete model when n is large. In our experiments with 
the finite-deck model, we are able to simulate up to n = 65. 
With b = 2, we obtain the following results:

•	 The cuts are 

•	 The value of the game (for Player I) is 
974∕8121 = 0.119935968476789.
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