
PLAY TIME WITH DETERMINANTS

Tewodros Amdeberhan and Shalosh B. Ekhad

Computing determinants is invariably in demand from all sorts of mathematical domains and needs
neither cynical advocacy nor does it lack motivation. In this semi-expository article we wish to illustrate
a few techniques that should receive ample attention due to their simplicity, elegance and effective
nature.
0 Glossary of notations and conventions
Throughout, almost all determinants have indices (i, j) ranging in {0, 1, . . . , n− 1}. Where there is no
confusion, we omit to write them.
m!! = 1!2! · · ·m! and (x)i = x(x+ 1) · · · (x+ i− 1) is the Pochhammer symbol.(
a
b

)
= 0 if either b < 0 or b > a.

Ĉti is the constant-term operator that extracts the coefficient of x0
i . Also Ĉt =

∏n−1
i=0 Ĉti.

Sn is the symmetric group of permutations on n letters.
xn = (x0, x1, . . . , xn−1) and Xn = x0x1 · · ·xn−1.
V (xn) is the Vandermionde determinant

∏
j>i(xj − xi).

[n]q = 1−qn

1−q and [n]!q = [1]q[2]q · · · [n]q

The Gaussian polynomials
(
n
k

)
q

= [n]!q
[k]!q [n−k]!q , for 0 ≤ k ≤ n;

(
n
k

)
q

= 0 for k < 0 or k > n.

1 The Method of Condensation
The idea originated with Charles L. Dodgson and the iterative form is propelled by Zeilberger [7]. Here
are some instances of its application.
1.1 Example. Consider the n × n matrix of entries

(
2i
j

)
. Let us compute the determinant. The first

step is to generalize it (introduce two additional parameters) as Zn(a, b) = det
[(

2i+2a
j+b

)]
. The next step

is an automated guess for its determinantal value

(1.1.1) 2(n
2)
n−1∏
i=0

(2i+ 2a)!i!
(i+ b)!(2i+ 2a− b)!

= 2(n
2)
n−1∏
i=0

(
2i+ 2a

b

)(
i+ b

b

)−1

.

Proof. According to [7], the following is always true for any determinant (when i→ i+ a; j → j + b)

Zn(a, b) =
Zn−1(a, b)Zn−1(a+ 1, b+ 1)− Zn−1(a+ 1, b)Zn−1(a, b+ 1)

Zn−2(a+ 1, b+ 1)
.

It remains to verify that (1.1.1) also satisfies this non-linear recurrence. Symbolic softwares are naturally
adept at this task. The proof will then be complete once two initial cases are checked, say for n = 1
and n = 2. �
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1.2 Example. In particular, setting a = b = 0 implies that det
[(

2i
j

)]
= 2(n

2). The Online Encyclopedia

of Integer Sequences (OEIS) associates 2(n
2) with the number of n×n binary matrices with no row sum

greater than n− 1, or the number of labeled n-colorable graphs on n nodes.
We introduce a generalization of formula (1.1.1) that is provable by Condensation.

(1.2.1) det
[(
ri+ x

j + y

)]
= r(

n
2)
n−1∏
i=0

(
ri+ x

y

)(
i+ y

y

)−1

.

Once again, the specialization x = y = 0 yields a pretty identity: det
[(
ri
j

)]
= r(

n
2). Equation (1.2.1)

also shows something interesting: the following determinant is independent of x.

det
[(
qi+ x

j

)]
= q(

n
2).

1.3 Example. The number of plane partitions that fit in an a× b× c box is enumerated by

Dn(a, b) := det
[(
i+ j + a+ b

i+ a

)]c−1

i,j=0

=
c−1∏
k=0

b−1∏
j=0

a−1∏
i=0

i+ j + k + 2
i+ j + k + 1

.

Again, this formula is provable by the Condensation method. This determinantal representation is
recorded here due to the apparent symmetry of the matrix on the left-hand side.

2 Buy one, get three free!

In the last example, set a = b = 0, and write Dn instead for Dn(0, 0). We will calculate Dn in three
different ways, each leading to a different interpretation.

2.1 À la Andrews

The present method has been utilized by George Andrews [2] in his proof of the Mills-Robbins-Rumsey
determinant [6]

(2.1.1) An := det
[(
µ+ j + i

2j − i

)]
= 2−n

n−1∏
i=0

(µ+ 2i+ 2)i( 1
2µ+ 2i+ 3

2 )i−1

(i)i( 1
2µ+ i+ 3

2 )i−1

.

The main essence was to exhibit a triangular matrix Tn so that AnTn is triangular too. In the same
spirit, let us implement the Vandermonde-Chu identity(

i+ j

i

)
=
∑
k

(
i

k

)(
j

i− k

)
,

which follows from an elementary combinatorial argument. Therefore

Dn = det
(
i+ j

i

)
= det

(
i

k

)
· det

(
k

j

)
= 1,

since in the latter the matrices are triangular with 1′s on the main diagonal.
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2.2 Constant-term identities
This method goes back, to at least, Zeilberger′s paper [8]. For the current application, begin as follows:(

i+ j

i

)
= Ĉti

(
xii(1 + x−1

i )i+j
)

= Ĉti(1 + xi)i(1 + x−1
i )j .

Therefore

Dn = Ĉt

n−1∏
i=0

(1 + xi)i det
[
(1 + x−1

i )j
]

= Ĉt

n−1∏
i=0

(1 + xi)i
∏
j>i

(
x−1
j − x

−1
i

)
=

1
n!
Ĉt
∏
j>i

(xj − xi)
∏
j>i

(
x−1
j − x

−1
i

)
=

1
n!
Ĉt

(−1)(
n
2)∏n−1

i=0 x
n−1
i

∏
j>i

(xj − xi)2 .

Since
∏
j>i(xj−xi) is the Vandermonde determinant V (x), we gather the coefficient of Xn−1

n in V 2(xn)

to be (−1)(
n
2)n!. This, of course, reproves a trivial special case of Dyson′s conjecture that the constant

term in
∏
j 6=i

(
1− xi

xj

)
equals n!.

2.2.1 Remark. The even powers (in particular, the square) of the Vandermonde determinant play a
crucial role in the quantum Hall effect phenomena via Laughlin′s wave function ansatz. Determining
the coefficients of their expansion, as symmetric functions, in terms of Schur functions has triggered
considerable interest among physicists (see [3] and references therein). At the moment of this writing,
extracting these numbers in general is an open problem.

2.3 Multilinearity of the determinant
Define the determinant Bn = det[(i + j)!]. For the third computation, watch an online video of a
lively lecture delivered by Zeilberger [10]. For the purpose at hand, let us make use of Euler′s formula
m! =

∫∞
0
tme−tdt. Thus

Bn = det
[∫ ∞

0

xi+jj e−xjdxj

]
=
∫

Rn
+

(
e−

∑
xjV (xn)

n−1∏
i=0

xjj

)
dXn

=
1
n!

∑
π∈Sn

∫
Rn

+

(
e−

∑
xjV (xn)(−1)π

n−1∏
i=0

x
π(j)
j

)
dXn

=
1
n!

∫
Rn

+

e−
∑
xjV 2(xn)dXn.

Observe that Bn = det[i!j!
(
i+j
i

)
] = (n−1)!!2Dn = (n−1)!!2. Hence, we obtain the Selberg-type integral∫

Rn
+

e−
∑
xjV 2(xn)dXn = n!!(n− 1)!!.
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2.4 Remark. In summary, the above ideas combined with Dodgson′s Condensation suggest simple
techniques that are efficient in proving more general evaluations, such as

det
[(
i+ j + α

i+ β

)]
, Ĉt

∏
j 6=i

(
1− xi

xj

)α
,

∫
Rn

+

Xα
ne
−
∑
xjV 2β(xn)dXn.

3 More Examples

The Delannoy numbers D(i, j) count walks from (0, 0) to (i, j) composed of unit steps East, North, and
North-East. These are given by

∑
k≥0

(
i
k

)(
j
k

)
2k.

3.1 Example. The below determinant was conjectured by Bacher and Krattenthaler [5] provided a
proof. We offer a simpler argument using Constant-term identities. For alternative automatic proof see
Koutschan [4].

Kn := det

min(2i,2j)∑
k=0

(
2i
k

)(
2j
k

)
2k

 = 4(n
2)
n−1∏
i=0

i!2(4i)!
(2i)!3

.

Proof. Start with
∑
k≥0

(
2i
k

)(
2j
k

)
2k = Ĉti(1 + 2xi)2i(1 + x−1

i )2j . Then

Kn = Ĉt

n−1∏
i=0

(1 + 2xi)2i det
[
(1 + x−1

i )2j
]

=
4(n

2)

n!
Ĉt
∏
j>i

(xj + x2
j − xi − x2

i ) det
[
(1 + x−1

i )2j
]

= 4(n
2)Ĉt

n−1∏
i=0

(xi + x2
i )
i det

[
(1 + x−1

i )2j
]

= 4(n
2) det

[
Ĉti(xi + x2

i )
i(1 + x−1

i )2j
]

= 4(n
2) det

[
Ĉti

(
xi−2j(1 + xi)2j+i

)]
= 4(n

2) det
[(

2j + i

2j − i

)]
.

Formula (1) in [1], with x = y, a = 2, computes the last determinant to produce the desired value. �

3.2 Example. Some play time with variants of Example 3.1 lead us to conjecture the determinant
Ln given below. The authors are grateful to Tiago Dinnis Da Fonseca (Univ. Montreal) who allowed
his proof to be included in this article. It is rather amusing how Ln turns out to be equivalent to
(2.1.1). By association, its evaluation is as simple or as complicated. For alternative automatic proof
see Koutschan [4].

Ln := det

min(2i,2j)∑
k=0

(
2i
k

)(
2j
k

)
4k

 = 16(n
2)
n−1∏
i=0

(2i)!(6i)!(3i+ 1)
(4i)!2(4i+ 1)

.
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Proof. It is evident that
∑
k≥0

(
2i
k

)(
2j
k

)
4k = Ĉti(1 + 2xi)2i(1 + 2x−1

i )2j . Then

Ln = Ĉt

n−1∏
i=0

(1 + 2xi)2i det
[
(1 + 2x−1

i )2j
]

=
4(n

2)

n!
Ĉt
∏
j>i

(xj + x2
j − xi − x2

i ) det
[
(1 + 2x−1

i )2j
]

= 4(n
2)Ĉt

n−1∏
i=0

(xi + x2
i )
i det

[
(1 + x−1

i )2j
]

= 4(n
2)Ĉt

n−1∏
i=0

(xi + x2
i )
i4(n

2)
∏
j>i

(x−1
j + x−2

j − x
−1
i − x

−2
i )

= 16(n
2)Ĉt

n−1∏
i=0

(xi + x2
i )
i det

[
(x−1
i + x−2

i )j
]

= 16(n
2) det

[
Ĉti(xi + x2

i )
i(x−1

i + x−2
i )j

]
= 16(n

2) det
[
Cti

(
xi−2j(1 + xi)i+j

)]
= 16(n

2) det
[(

j + i

2j − i

)]
.

Alas! this is the familiar Mills-Robbins-Rumsey determinant (2.1.1), specialized at µ = 0,

det
[(

j + i

2j − i

)]
= 2−n

n−1∏
i=0

(2i+ 2)i(2i+ 3
2 )i−1

(i)i(i+ 3
2 )i−1

.

Using (y)i = (y+i−1)
(y−1)! , the right-hand side routinely transforms to the required product expression. �

4 The Holonomic Ansatz

Once more, this automatic method for the evaluation of determinants is a creation of Zeilberger [9].
We are grateful to Christoph Koutschan (RISC-Linz) for allowing his proofs, which exploit the present
method of holonomic ansatz, to be made available [4]. So far, this is the only technique providing a
proof to the following ex-conjecture.

4.1 Example. We have the determinantal evaluation

det

min(3i,3j)∑
k=0

(
3i
k

)(
3j
k

)
3k

 = 28(n
2)
n−1∏
i=0

( 7
12 )i( 1

12 )i( 5
4 )i( 3

4 )i
( 7
6 )i( 1

6 )i( 2
3 )i( 2

3 )i

= 62(n
2)
n−1∏
i=1

i∏
j=1

(12j − 5)(12j − 11)(4j + 1)(4j − 1)
(6j + 1)(6j − 5)(3j − 1)(3j − 1)

.



6 TEWODROS AMDEBERHAN AND SHALOSH B. EKHAD

5 Quantum Analogues

After the initial release of the present note and its conjectures, the authors received instant feedbacks.
They are grateful to Johann Cigler (Univ. Vienna) for the permission to incorporate his conjectures
and comments on certain q-analogues. Although the proofs might be carried out by employing the
methods from the earlier sections, we are not pursuing the details. The reader is invited to do so.

5.1 Example. A q-analogue of formula (1.2.1) is given by

det

[(
ri+ x

j + y

)
q

qi(y−x)

]
= [r](

n
2)
q

n−1∏
i=0

q(r−1)(i
2)

[i]!qr

(
ri+x
y

)
q

[i]!q
(
i+y
y

)
q

.

5.2 Example. The determinants

det

min(i,j)∑
k=0

(
ri

k

)
q

(
sj

k

)
q

zk

 = z(
n
2)
n−1∏
i=0

(
ri

i

)
q

(
si

i

)
q

, and

det

min(i,j)∑
k=0

(
i

k

)
q

(
j

k

)
q

k∏
l=1

(1 + ql)

 =
n−1∏
i=0

(1 + qi)n−i

both follow from the general formula

(5.2.1) det

min(i,j)∑
k=0

a(i, k)b(j, k)f(k)

 =
n−1∏
i=0

a(i, i)b(i, i)f(i).

The identity (5.2.1) results from an immediate application of the method outlined in Section 2.1.

5.3 Example. The determinant

det

min(ri,j)∑
k=0

(
ri

k

)
q

(
rj

k

)
q

 = q(r−1)(n
3)

n∏
j=1

[r]n−jqj

n−1∏
i=0

(
ri

i

)
q

follows from

det

min(ri,j)∑
k=0

(
ri

k

)
q

f(j, k)

 = det

min(ri,j)∑
k=0

(
ri

k

)
q

n−1

i,j=0

n−1∏
i=0

f(i, i).

Therefore, it suffices to prove that

det

min(ri,j)∑
k=0

(
ri

k

)
q

 = q(r−1)(n
3)

n∏
j=1

[r]n−jqj .
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