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Abstract

We use Experimental Mathematics and Symbolic Computation (with Maple), to
search for lots and lots of Perrin- and Lucas- style primality tests, and try to sort
the wheat from the chaff. More impressively, we find quite a few such primality tests
for which we can explicitly construct infinite families of pseudo-primes, rather, like
in the cases of Perrin pseudo-primes and the famous Carmichael primes, proving
the mere existence of infinitely many of them.

1. Preface: How it all Started thanks to Vince Vatter

It all started when we came across Vince Vatter’s delightful article [V], where he

gave a cute combinatorial proof, inspired by COVID, and social distancing, of the

following fact that goes back to Raoul Perrin [P] (See also [Sl1], [Sl2], [St], [W]).

Perrin’s Observation: Let the integer sequence A(n) defined by

A(1) = 0 A(2) = 2 A(3) = 3

A(n) = A(n− 2) +A(n− 3) (for n > 3).

Then, for every prime p, we have p | A(p).

Perrin, back in 1889, was wondering whether the condition is sufficient, i.e.

whether there are any pseudo-primes, i.e. composite n such that A(n)/n is an inte-

ger. He could not find any, and as late as 1981, none was found ≤ 140000 (see [AS]).

In 1982, Adams and Shanks [AS] rather quickly found the smallest Perrin pseudo

prime, 271441, followed by the next-smallest, 904631, and then they found quite a

few other ones. Jon Grantham [Gr] proved that there are infinitely many Perrin

pseudo-primes, and finding as many as possible of them, became a computational
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challenge, see Holger’s paper [H].

Another, older, primality test is that based on the Lucas numbers ([Sl3], [Sl4]).

Vince Vatter’s Combinatorial Proof

Vatter first found a combinatorial interpretation of the Perrin numbers, as

the number of circular words of length n in the alphabet {0, 1}, that avoid the

consecutive subwords (aka factors in formal language lingo), {000, 11}.
More formally: words w = w1, . . . , wn in the alphabet {0, 1}, such that for

1 ≤ i ≤ n − 2, wiwi+1wi+2 ̸= 000, and also wn−1wnw1 ̸= 000 and wnw1w2 ̸= 000

as well as for 1 ≤ i ≤ n− 1, wiwi+1 ̸= 11, and wnw1 ̸= 11.

Then he argued that if p is a prime, all the p circular shifts are different, since

otherwise there would be a non-trivial period, that can’t happen since p is prime.

Since the constant words 0p and 1p obviously can’t avoid both 00 and 111, Perrin’s

theorem follows.

This proof is reminiscent of Solomon Golomb’s [G] snappy combinatorial proof

of Fermat’s little theorem [G] that argued that there are ap−a non-monochromatic

straight necklaces with p beads of a colors, and for each such necklace, the p rotations

are all different (see also [Z1], p. 560).

When we saw Vatter’s proof we got all excited. Vatter’s argument transforms

verbatim to counting circular words in any (finite) alphabet, and any (finite) set

of forbidden (consecutive) patterns! More than twenty years ago one of us (DZ)

wrote a paper, in collaboration with his then PhD student, Anne Edlin [EZ], that

automatically finds the (rational) generating function in any such scenario, hence

this is a cheap way to manufacture lots and lots of Perrin-style primality tests.

We already had a Maple package, CGJ, to handle it, so all that remained was to

experiment with many alphabets and many sets of forbidden patterns, and search

for those that have only few small pseudo-primes.

This inspired us to write our first Maple package, PerrinVV.txt. See the front of

the present article front of the present article for many such primality tests, inspired

by sets of forbidden patterns, along with all the pseudoprimes less than a million.

2. An even better way to manufacture Perrin-style Primality tests

After the initial excitement we got an epiphany, and as it turned out, it was already

made, in 1990, by Stanley Gurak [Gu]. Take any polynomial Q(x) with integer

coefficients, and constant term 1, and write it as

Q(x) = 1 − e1 x + e2x
2 − · · ·+ (−1)k ekx

k .

https://sites.math.rutgers.edu/~zeilberg/tokhniot/CGJ
https://sites.math.rutgers.edu/~zeilberg/tokhniot/PerrinVV.txt
 https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/perrin.html
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Factorize it over the complex numbers

Q(x) = (1− α1x)(1− α2x) · · · (1− αkx) .

Note that e1, e2, . . . are the elementary symmetric functions in α1, . . . , αk.

Defining

a(n) := αn
1 + αn

2 + . . . + αn
k ,

it follows thanks to Newton’s identities ([M]) that {a(n)} is an integer sequence.

The generating function

∞∑
n=0

a(n)xn =
1

1− α1x
+

1

1− α2x
+ . . . +

1

1− αkx
,

has denominator Q(x) and some numerator, let’s call it P (x), with integer coef-

ficients, that Maple can easily find all by itself.

So we can define an integer sequence {a(n)} in terms of the rational function

P (x)/Q(x), where Q(x) is any polynomial with constant term 1, and P (x) comes

out as above:

∞∑
n=0

a(n)xn =
P (x)

Q(x)
.

We claim that each such integer sequence engenders a Perrin-style primality test,

namely

a(p) ≡ e1(mod p).

To see this, note that

(α1 + · · ·+ αk)
p = a(p) + pA(p),

where

A(p) =
∑

i1+i2+···+ik=p
i1,i2,...ik<p

(p− 1)!

i1! · · · ik!
αi1
1 · · ·αik

k

is a symmetric polynomial in the αi. The fundamental theorem of symmetric func-

tions [M] implies that A(p) is an integer. Fermat’s little theorem then gives

a(p) ≡ (α1 + · · ·+ αk)
p = ep1 ≡ e1(mod p).

So this is an even easier way to manufacture lots and lots of Perrin-style primality

tests, and we can let the computer search for those that have as few small pseudo-

primes as possible.

This is implemented in the Maple package Perrin.txt. Again, see the front

of the present article for many such primality tests, inspired by this more general

method (first suggested by Stanley Gurak [Gu]).

https://sites.math.rutgers.edu/~zeilberg/tokhniot/Perrin.txt
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/perrin.html
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/perrin.html
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Searching for such primality tests with as few pseudo-primes less than a million,

we stumbled on the following example.

The DB-Z Primality Test

Let
∞∑

n=0

a(n)xn :=
3x4 + 5x2 + 6x− 7

4x7 + x4 + x2 + x− 1
,

or equivalently, the integer sequence defined by the initial values 1, 3, 4, 11, 16, 30, 78,

and

a(n) = a(n− 1) + a(n− 2) + a(n− 4) + 4a(n− 7)

for n > 7. Then a(p) ≡ 1 (mod p) for all primes p.

Manuel Kauers kindly informed us that the seven smallest DB-Z pseudo-primes

are as follows.

� 1531398 = 2 · 3 · 11 · 23203

� 114009582 = 2 · 3 · 17 · 1117741

� 940084647 = 3 · 47 · 643 · 10369

� 4206644978 = 2 · 97 · 859 · 25243

� 7962908038 = 2 · 191 · 709 · 29401

� 20293639091 = 11 · 3547 · 520123

� 41947594698 = 2 · 3 · 19 · 523 · 703559

(This was a computational challenge posed by us to Manuel Kauers, and we

offered to donate 100 dollars to the OEIS in his honor. The donation was made.)

After the first version of this paper was written, with the help of Manuel Kauers,

we discovered an even better primality test.

The DB-Kauers primality test

Let
∞∑

n=0

a(n)xn :=
9x5 + 16x4 + 10x− 6

3x6 + 9x5 + 8x4 + 2x− 1
,

or equivalently, the integer sequence defined by initial conditions 2, 4, 8, 48, 157, 382

and

a(n) = 2a(n− 1) + 8a(n− 4) + 9a(n− 5) + a(n− 6)

for n > 6. Then a(p) ≡ 2 (mod p) for all primes p.

The smallest pseudoprime is 2, 260, 550, 373 = 3 · 103 · 107 · 68371.
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3. Perrin-Style Primality Tests with Explicit Infinite Families of Pseudo-
Primes

We are particularly proud of the next primality test, featuring the Companion Pell

numbers https://oeis.org/A002203. These numbers have been studied exten-

sively, but as far as we know using them as a primality test is new. It is not a

very good one, but the novelty is that it has an explicit doubly-infinite set of

pseudo-primes.

The Companion Pell Numbers Primality Test Let

∞∑
n=0

a(n)xn :=
2x− 2

x2 + 2x− 1
,

or equivalently, let a(n) be the integer sequence defined by

a(1) = 2 a(2) = 6

a(n) = 2a(n− 1) + a(n− 2).

Then a(p) ≡ 2 (mod p) for all primes p.

Theorem 1. The doubly-infinite family

{ 2i · 3j | i ≥ 3 , j ≥ 0 } ,

are Companion-Pell pseudoprimes. In other words,

a(2i · 3j)− 2

2i3j
,

is an integer if i ≥ 3 and j ≥ 0.

Proof. We will proceed by a kind of double-induction where we show that if the

conclusion holds for n, it also holds for 2n and 3n, provided that n is of the form

stated in the theorem.

Let

α1 := 1 +
√
2 , α2 := 1−

√
2

be the roots of the characteristic equation for a(n). It is routine to check that

a(n) = αn
1 + αn

2 . Since α1α2 = −1, we have the following recurrences:

a(2n) = a(n)2 + 2(−1)n+1 (1)

a(3n) = a(n)3 + 3(−1)n+1a(n). (2)

Now define the sequence b(n) = a(n)− 2. Our goal is to show that b(n) is divisible

by n.

https://oeis.org/A002203
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If we substitute b(n) into (1) for even n, then we obtain

b(2n) = b(n)(b(n) + 4).

This gives
b(2n)

2n
=

b(n)

n

b(n) + 4

2
.

If an even n divides b(n), then both factors are integers, and therefore 2n divides

b(2n).

Substituting b(n) into (2) when n is even yields

b(3n) = b(n)(b(n)2 + 6b(n) + 12).

Therefore
b(3n)

3n
=

b(n)

n

b(n)2 + 6b(n) + 12

3
.

It is easy to prove that b(n) is divisible by 3 when n is divisible by 6. Therefore, if

an n divisible by 6 divides b(n), then 3n divides b(3n).

Since both b(8)/8 and b(24)/24 are integers, the theorem follows by induction.

We now state without proofs (except for Theorem 4, where we give a sketch) a

few other primality tests that have explicit infinite families of pseudoprimes.

Theorem 2. Let
∞∑

n=0

a(n)xn :=
x− 2

2x2 + x− 1
,

or equivalently, let a(n) be the sequence defined by

a(1) = 1 a(2) = 5

a(n) = a(n− 1) + 2a(n− 2).

Then a(p) ≡ 1 (mod p) if p is prime. Furthermore, {2i |i ≥ 2} are all pseudo-

primes. That is, a(2i) ≡ 2i (mod 2i) if i ≥ 2.

Theorem 3. Let
∞∑

n=0

a(n)xn :=
2x− 2

2x2 + 2x− 1
,

or equivalently, let a(n) be defined by

a(1) = 2 a(2) = 8

a(n) = 2a(n− 1) + 2a(n− 2).

Then a(p) ≡ 2 (mod p) if p is prime. Furthermore, the following infinite families

are all pseudo-primes:

{3i | i ≥ 2} {2 · 3i | i ≥ 1} {11 · 81i | i ≥ 1}
{23 · 35i | i ≥ 1} {29 · 34+12i | i ≥ 0} {31 · 316i | i ≥ 1}.
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Theorem 4. Let
∞∑

n=0

a(n)xn :=
2x2 + 3

2x3 + 2x2 + 1
,

or equivalently, let a(n) be defined by

a(1) = 0 a(2) = −4 a(3) = −6

a(n) = −2(a(n− 2) + a(n− 3)).

Then a(p) ≡ 0 (mod p) if p is prime. Furthermore, the following infinite families

are all pseudo-primes:

{2i | i ≥ 2} {3 · 24i | i ≥ 2} {11 · 218i | i ≥ 2} {13 · 217+20i | i ≥ 2}.

Sketch of Proof. We use the C-finite ansatz [Z2]. It follows from the C-finite ansatz

that

b(n) = a(2n)− a(n)2

satisfies some recurrence. It turns out to be

b(n) = 2b(n− 1) + 4b(n− 3).

We now define

c(n) :=
b(n)

2⌊n/2⌋
,

and once again the C-finite ansatz implies that c(n) satisfies some recurrence. (The

even and odd terms are independently C-finite, and the interlacing of C-finite se-

quences is C-finite.) It turns out to be

c(n) = 2c(n− 2) + 4c(n− 4) + 2c(n− 6)

with initial conditions −4,−4,−20,−24,−56,−76. Note that c(n) are manifestly

integers. Going back to a(n) we have the recurrence

a(2n) = a(n)2 + 2⌊n/2⌋c(n) ,

and it follows by induction that a(2i)/2i are all integers. A similar argument goes

for the other infinite families claimed.

Theorem 5. Let
∞∑

n=0

a(n)xn :=
2x2 + 2x− 3

x3 + 2x2 + x− 1
,

or equivalently, let a(n) be defined by

a(1) = 1 a(2) = 5 a(3) = 10

a(n) = a(n− 1) + 2a(n− 2) + a(n− 3).



INTEGERS: 23 (2023) 8

Then a(p) ≡ 1 (mod p) for all primes p. Furthermore, the following infinite families

are all pseudo-primes:

{3i | i ≥ 2} {5 · 36+10 i | i ≥ 0} {5 · 38+10 i | i ≥ 0} {7 · 34+6 i | i ≥ 0}.

We found nine other such primality tests with infinite explicit families of pre-

sodoprimes. These can be viewed by typing PDB(x); in the Maple package Perrin.txt.

For fast computations and explorations using C programs, readers are welcome

to explore the authors’ GitHub repository.

Acknowledgment: Many thanks to Manuel Kauers for his computational prowess,

and to the referee for a helpful remark.
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[Sl1] Neil S. A. Sloane, The On-line Sequence of Integer Sequences, Sequence A001608,
https://oeis.org/A001608 .

[Sl2] Neil S. A. Sloane, The On-line Sequence of Integer Sequences, Sequence A013998,
https://oeis.org/A013998

[Sl3] Neil S. A. Sloane, The On-line Sequence of Integer Sequences, Sequence A005854,
https://oeis.org/A005845 .

[Sl4] Neil S. A. Sloane, The On-line Sequence of Integer Sequences, Sequence A000032,
https://oeis.org/A000032 .

https://github.com/rwbogl/pt


INTEGERS: 23 (2023) 9

[St] Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American
274(6) (1996), pp. 102-103.

[V] Vince Vatter, Social Distancing, Primes, and Perrin Numbers, , Math Horizons, 29(1) (2022).
https://sites.math.rutgers.edu/~zeilberg/akherim/vatter23.pdf .

[W] Wikipedia, Perrin Number, https://en.wikipedia.org/wiki/Perrin number .

[Z1] Doron Zeilberger, Enumerative and Algebraic Combinatorics, in: Princeton Companion to
Mathematics (edited by W.T. Gowers), Princeton University Press, 2008, 550-561.
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/enu.pdf .

[Z2] Doron Zeilberger, The C-finite ansatz, Ramanujan Journal 31 (2013), 23-32.
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cfinite.html .


	Preface: How it all Started thanks to Vince Vatter
	An even better way to manufacture Perrin-style Primality tests
	Perrin-Style Primality Tests with Explicit Infinite Families of Pseudo-Primes

