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Abstract: A symbolic-computational algorithm, fully implemented in Maple, is described, that

computes explicit expressions for generating functions that enable the efficient computations of the

expectation, variance, and higher moments, of the random variable ‘sum of distances to the root’,

defined on any given family of rooted ordered trees (defined by degree restrictions). We provide

convincing evidence that the limiting (scaled) distributions are all the same, and coincide with

the limiting distribution of the same random variable, when it is defined on labeled rooted trees,

thereby introducing a (hopefully) new universality class of combinatorial random variables.

Maple packages and Sample Input and Output Files

This article is accompanied by Maple packages, TREES.txt, and THS.txt, and several input and

output files available from the front of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/otrees.html .

Background

While many natural families of combinatorial random variables, Xn, indexed by a positive integer

n, (for example, tossing a coin n times and noting the number of Heads, or counting the number

of occurrences of a specific pattern in an n-permutation) have different expectations, µn, and

different standard deviations, σn, and (usually) largely different asymptotic expressions for these,

yet the centralized and scaled versions, Zn := Xn−µn

σn
, very often, converge (in distribution) to the

standard normal distribution whose probability density function is famously 1√
2π
exp(−x

2

2 ), and

whose moments are 0, 1, 0, 3, 0, 5, 0, 15, 0, 105, . . .. Such sequences of random variables are called

asymptotically normal. Whenever this is not the case, it is a cause for excitement. One celebrated

case (see Dan Romik’s [Ro] masterpiece for an engaging and detailed description) is the random

variable ‘largest increasing subsequence’, defined on the set of permutations, where the intriguing

Tracy-Widom distribution shows up.

Other, more recent, examples of abnormal limiting distributions are described in [Z1], [EZ1],[EZ2],

and [EZ3].

In this article, we continue in the same vein as in [EZ2]. In that article, the random variable ‘sum of

the distances from the root’, defined on the set of labelled rooted trees on n vertices, was considered,

and it was shown how to find explicit expressions for any given moment, and the first 12 moments

were derived, extending the pioneering work of John Riordan and Neil Sloane ([RiS]), who derived

an explicit formula for the expectation. In [EZ2], one of us (DZ) pledged a donation of 100 dollars

to the OEIS Foundation in honor of the first to identify the centralized-scaled limiting distribution.

The exact and approximate values for α3 (the skewness), α4 (the kurtosis), and the higher moments
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through the ninth turn out to be as follows.

α3 =

(
6π − 75

4

)√
3
√

π
10−3π

10− 3π
= 0.7005665293596503 . . . ,

α4 =
−189π2 + 315π + 884

7 (10− 3π)
2 = 3.560394897132889 . . . ,

α5 =

(
36π2 + 75

2 π −
105845
224

)√
3
√

π
10−3π

(10− 3π)
2 = 7.2563753582799571 . . . ,

α6 =
15

16016

−144144π3 − 720720π2 + 3013725π + 2120320

(10− 3π)
3 = 27.685525695770609 . . . ,

α7 =

(
162π3 + 6615

4 π2 − 103965
32 π − 101897475

9152

)√
3
√

π
10−3π

(10− 3π)
3 = 90.0171829093603301 . . . ,

α8 =
3

2586584

−488864376π4 − 8147739600π3 − 455885430π2 + 86568885375π + 32820007040

(10− 3π)
4

= 358.80904151261251 . . . ,

α9 =

(
648π4 + 15795π3 + 591867

16 π2 − 461286225
2288 π − 188411947088175

662165504

)√
3
√

π
10−3π

(10− 3π)
4 = 1460.7011342971821 . . . .

This Article

In this article we extend the work of [EZ2] and treat infinitely many other families of trees. For

any given set of positive integers, S, we will have a ‘sample space’ of all ordered rooted trees where

a vertex may have no children (i.e. be a leaf) or it must have a number of children that belongs

to S. If S = {2} we have the case of complete binary trees.

For each such family, defined by S, we will show how to derive explicit expressions for the generating

functions of the numerators of the straight moments, from which one can easily get many values,

and very efficiently find the numerical values for the moments-about-the-mean and hence the scaled

moments. For the special case of complete binary trees, we will derive explicit expressions for the

first nine moments (that may be extended indefinitely), as well as explicit expressions for the

asymptotics of the scaled moments, and surprise! they coincide exactly with those found in [EZ2]

for the case of labelled rooted trees. This leads us to conjecture that the limiting distribution is

the same for each such family. Hence, another ‘universality’ class is born!

When we googled the kurtosis (α4), 3.560394897132 . . . , to see whether anyone else came up

with it before, we found one hit, our own [EZ3], where the random variable was the number of

inversions in 132-avoiding permutations. In hindsight it is not surprising, since both 132-avoiding

permutations and complete binary trees are counted by Catalan numbers, and there is, possibly,
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a natural bijection between these objects that sends the total height to the number of inversions.

What seemed surprising (to us) is that it seems to coincide with the case of labelled rooted trees

treated in [EZ2].

Rooted Ordered Trees

Recall that an ordered rooted tree is an unlabeled graph with the root drawn at the top, and each

vertex has a certain number (possibly zero) of children, drawn from left to right. For any finite set

of positive integers, S, let T (S) be the set of all rooted labelled trees where each vertex either has

no children, or else has a number of children that belongs to S. The set T (S) has the following

structure (“grammar”)

T (S) = {·}
⋃
i∈S
{·} × T (S)i .

Fix S, Let fn be number of rooted ordered trees in T (S) with exactly n vertices. It follows

immediately, by elementary generatingfunctionology, that the ordinary generating function

f(x) :=

∞∑
n=0

fn x
n ,

(that is the sum of the weights of all members of T (S) with the weight xNumberOfV ertices assigned

to each tree) satisfies the algebraic equation

f(x) = x

(
1 +

∑
i∈S

f(x)i

)
.

Given an ordered tree, t, define the random variable H(t) to be the sum of the distances to the

root of all vertices. Let Hn be its restriction to the subset of T (S), let’s call it Tn(S), of members

of T (S) with exactly n vertices. Our goal in this article is to describe a symbolic-computational

algorithm that, for any finite set S of positive integers, automatically finds generating functions

that enable the fast computation of the average, variance, and as many higher moments as desired.

We will be particularly interested in the limit, as n → ∞, of the centralized-scaled distribution,

and we have strong evidence to conjecture that it is always the same as the one for rooted labelled

trees found in [EZ2].

Let Pn(y) be the generating polynomial defined over Tn(S), of the random variable, ‘sum of dis-

tances from the root’. Define the grand generating function

F (x, y) =

∞∑
n=0

Pn(y)xn .

Consider a typical tree, t, in Tn(S), and now define the more general weight by xNumberOfV ertices yH(t) =

xn yH(t). If t is a singleton, then its weight is simply x1y0 = x, but if its sub-trees (the trees whose

roots are the children of the original root) are t1, t2, . . . ti (where i ∈ S), then

H(t) = H(t1) + . . .+H(ti) + n− 1 ,
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since when you make the tree t, out of subtrees t1, . . . , ti by placing them from left to right and then

attaching them to the root, each vertex gets its ‘distance to the root’ increased by 1, so altogether

the sum of the vertices’ heights gets increased by the total number of vertices in t1, . . . , ti (i.e.

n− 1). Hence F (x, y) satisfies the functional equation

F (x, y) = x ·

(
1 +

∑
i∈S

F (xy, y)i

)
,

that can be used to generate many terms of the sequence of generating polynomials {Pn(y)}.

Note that when y = 1, F (x, 1) = f(x), and we get back the algebraic equation satisfied by f(x).

From Enumeration to Statistics in General

Suppose that we have a finite set, A, on which a certain numerical attribute, called random variable,

X, (using the probability/statistics lingo), is defined.

For any non-negative integer i, let’s define

Ni :=
∑
a∈A

X(a)i .

In particular, N0(X) is the number of elements of A.

The expectation of X, E[X], denoted by µ, is, of course,

µ =
N1

N0
.

For i > 1, the i-th straight moment is

E[Xi] =
Ni
N0

.

The i-th moment about the mean is

mi := E[(X − µ)i] = E[

i∑
r=0

(
i

r

)
(−1)rµrXi−r] =

i∑
r=0

(−1)r
(
i

r

)
µrE[Xi−r]

=

i∑
r=0

(−1)r
(
i

r

)(
N1

N0

)r
Ni−r
N0

=
1

N i
0

i∑
r=0

(−1)r
(
i

r

)
Nr

1N
i−r−1
0 Ni−r .
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Finally, the most interesting quantities, statistically speaking, apart from the mean µ and variance

m2 are the scaled-moments, also known as, alpha coefficients, defined by

αi :=
mi

m
i/2
2

.

Using Generating functions

In our case X is Hn (the sum of the vertices’ distances to the root, defined over rooted ordered

trees in our family, with n vertices), and we have

N1(n) = P ′n(1)

Ni(n) = (y
d

dy
)iPn(y)

∣∣
y=1

.

It is more convenient to first find the numerators of the factorial moments

Fi(n) = (
d

dy
)iPn(y)|y=1 ,

from which Ni(n) can be easily found, using the Stirling numbers of the second kind.

Automatic Generation of Generating functions for the (Numerators of the) Factorial

Moments

Let’s define

P (X) = 1 +
∑
i∈S

Xi ,

then our functional equation for the grand-generating function, F (x, y) can be written

F (x, y) = xP (F (xy, y)) .

If we want to get generating functions for the first k factorial moments of our random variable Hn,

we need the first k coefficients of the Taylor expansion, about y = 1, of F (x, y). Writing y = 1 + z,

and

G(x, z) = F (x, 1 + z) ,

we get the functional equation for G(x, z)

G(x, z) = xP (G(x+ xz, z)) . (FE)

Let’s write the Taylor expansion of G(x, z) around z = 0 to order k

G(x, z) =

k∑
r=0

gr(x)
zr

r!
+O(zk+1) .
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It follows that

G(x+ xz, z) =

k∑
r=0

gr(x+ xz)
zr

r!
+O(zk+1) .

We now do the Taylor expansion of gr(x+ xz) around x, getting

gr(x+ xz) = gr(x) + g′r(x)(xz) + g′′r (x)
(xz)2

2!
+ . . . + g(k)r (x)

(xz)k

k!
+ O(zk+1) .

Plugging all this into (FE), and comparing coefficients of respective terms of zr for r from 0 to k

we get k + 1 extremely complicated equations relating g
(j)
r (x) to each other. It is easy to see that

one can express gr(x) in terms of g
(j)
s (x) with s < r (and 0 ≤ j ≤ k) .

Using implicit differentiation, the derivatives of g0(x), g
(j)
0 (x) (where g0(x) is the same as f(x)),

can be expressed as rational functions of x and g0(x). As soon as we get an expression for gr(x) in

terms of x and g0(x), we can use calculus to get expressions for the derivatives g
(j)
r (x) in terms of

x and g0(x). At the end of the day, we get expressions for each gr(x) in terms of x and g0(x) (alias

f(x)), and since it is easy to find the first ten thousand (or whatever) Taylor coefficients of g0(x),

we can get the first ten thousand coefficients of gr(x), for all 0 ≤ r ≤ k, and get the numerical

sequences that will enable us to get the above-mentioned statistical information.

The beauty is that this is all done by the computer! Maple knows calculus.

We can do even better. Using the methods described in [FS], one should be able to get, automat-

ically, asymptotic formulas for the expectation, variance, and as many moments as desired. Alas,

implementing it in general would have to wait for the future.

For the special case of complete binary trees, everything can be expressed in terms of Catalan

numbers, and hence the asymptotic is easy, and our beloved computer, running the Maple package

TREES.txt (mentioned above), obtained the results in the next section.

Computer-Generated Theorems About the Expectation, Variance, and First Nine Mo-

ments for the Total Height on Complete Binary Trees on n Leaves

See the output file

http://www.math.rutgers.edu/~zeilberg/tokhniot/oTREES3.txt .

Universality

The computer output, given in the above webpage, proved that for this case, of complete binary

trees, the limits of the first nine scaled moments coincide exactly with those found in [EZ2], and

given above. Numerical evidence, obtained thanks to the closed-form expressions for the generating

functions for the numerators of the moments obtained by our package, indicates that for randomly-

chosen sets, S, the random variable Hn defined on Tn(S) always has the same limiting distribution.
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We conjecture that this continuous probability distribution, whose probability density function is

yet to be found, and for which we know the exact values of the first twelve moments, is universal

in the sense of applying to all families of ordered trees considered here.

Conclusion

Even more interesting than the actual research reported here, it the way that is was obtained. Fully

automatically!
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