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Doron Zeilberger

Project Summary
TARGETED “PROOF MACHINES” IN COMBINATORICS

Doron Zeilberger proposes to develop algorithms for the automatic discovery and proof of results
in combinatorics and related areas. In particular he hopes to mechanize Dodgson’s method for
evaluating hypergeometric determinants, to use techniques from computational linguistics to em-
pirically discover (and then rigorously prove) ‘grammars’ of combinatorial families, and to develop
a computational Ansatz for multi-variate rational generating functions. He also proposes to inves-
tigate combinatorial analogs of techniques from combinatorial chemistry, and to try to prove Mark
Haiman’s “(n+ 1)n−1” Diagonal Harmonics conjecture

Note: Previous grants of Zeilberger were supported by the Algebra and Number Theory program,
with split-funding from Analysis, Computational Mathematics, and Numeric and Symbolic Com-
putations (Computer Science). The present proposal may also be considered for such split-funding.
In this proposal the Analysis component is less explicit, but the computational component is even
more pronounced than previously.
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Summary of Results from Previous NSF Support: DMS-9123836 and DMS-9500646

1. The current NSF award number is DMS-9500646 for the period 1995-98, totaling $120,000 .

2. Its title was: “Combinatorics, Special Functions, and Computer-Algebra”.

3. Summary of the results of the completed work.

(The numbered references apply to the list of papers written with the NSF support of the above
grants, given at section 4. The lettered references are to papers given at the end of the section
“Proposed Research”.)

The Refined Alternating Sign Matrix Conjecture

In my penultimate grant, DMS-9123836, I proposed to prove the Alternating Sign Matrix Conjec-
ture, which I did([12]). This conjecture, due to Mills, Robbins, and Rumsey[MRR], asserts that the
number of n × n alternating sign matrices (which are matrices whose entries are from {−1, 0, 1},
whose row- and column- sums are all 1, and in which the non-zero entries in each row and column
alternate in sign) equals [(3n− 2)!/(2n− 1)!][(3n− 5)!/(2n− 2)!][(3n− 8)!/(2n− 3)!] . . . [1!/n!].

The proof was very long, and was verified by 85 checkers, who each checked a small part. This was
made possible by the structured form in which the proof was presented, with lemmas, sublemmas,
subsublemmas, ..., forming a coherent logical web. Each node was assigned a checker, and all he
or she had to do was check that the (sub)i+1-lemmas of the checked (sub)i-lemma imply it. In
addition, Dave Bressoud kindly served as an independent global checker.

In my ultimate grant, I proposed to extend the method of proof of [12] to prove the so-called
Refined Alternating Sign Matrix Conjecture. The refined version, also conjectured in [MRR], gives
a certain explicit expression for the number of n× n alternating sign matrices whose sole first-row
‘1’ is at the rth column. This I did, but not in the proposed way, due to an unexpected, exciting,
development.

A few months after the appearance of [12], Greg Kuperberg[Ku] surprised the combinatorial-
enumeration community with a much shorter proof, that was based on the Izergin-Korepin([KBI])
determinant formula for square-ice from Statistical Physics, that follows, non-trivially, from the cel-
ebrated Yang-Baxter equations. When I saw Kuperberg’s brilliant proof, I realized that it should
extend to prove the refined ASM conjecture. This I did ([13]), using, in addition to Kuperberg’s
ideas, the seminal work of Dick Askey, George Andrews, and Jim Wilson on q− analogs of the
classical orthogonal polynomials ([AA],[AW]).

Dave Bressoud has just completed the first draft of a book([Br2]) on the Alternating Sign Matrix
Conjecture, and its refinement, that will describe my proof of the refined version, as well as Kuper-
berg’s proof that lead to it, and the seminal contributions of Mills, Robbins, and Rumsey, as well
as George Andrews’s[An2] tour-de-force proof of the so-called TSSCPP conjecture (that my proof
in [12] depended on), as well as background material. Bressoud’s book should be accessible to the
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proverbial bright advanced undergraduate.

Permutation Statistics

Dominique Foata and I have defined an extension of the classical permutation statistics inv and maj
parameterized by an arbitrary graph ([14]). We characterized those graphs that have the Mahonian
property, i.e. the generating functions of inv and maj are the same.

In [15], John Noonan and I give a new approach to the counting of permutations with a prescribed
number of occurrences of a given class of ‘forbidden patterns’.

Hyman Bass’s Evaluation of the Zeta Function of a Graph

Also with Foata, we generalized, and gave a combinatorial proof, of Hyman Bass’s ([Ba]) evaluations
of the Ihara-Selberg Zeta function of a graph. We were able to find connections to the Amitsur
identity and to Lyndon Words.

Bijective Proofs

On a lighter note, Foata and I found a bijective proof of a linear recurrence for the Schröder-
Hipparchus numbers ([31]), meeting a challenge posed by Richard Stanley in his delightful and
erudite article ([Sta2]). In [25] I give a short involutive proof of Dodgson’s rule for evaluating
determinants. It is based on a ‘racy’ model of n married men and n married women, who each
have one extra-marital affair. This involution should generalize to the case where each individual
is allowed r affairs, which would presumably prove the generalized Dodgson-Sylvester determinant
identities.

Determinant Evaluations

I realized that Charles Dodgson’s condensation method (that, incidentally inspired alternating sign
matrices) could be used to explicitly evaluate combinatorial determinants ([16],[AE]). I am currently
working on making this purely mechanical (see the section on the Dodgson Ansatz below).

In [29], Christian Krattenthaler and I prove an amazing determinant evaluation conjectured by
Enrico Bombieri, David Hunt, and Alf van der Poorten ([BHP]). This was (a generalization of)
the first open case in an infinite family of such conjectured determinant-evaluations that entail
far-reaching number-theoretic consequences. We are currently working on doing the general case.

Computer-Generated Research

A large part of my research effort consists in harnessing the computer to prove theorems that
otherwise would be very difficult, and sometimes impossible, to do by human means alone. This
theme is in the background of most of my research, at least implicitly, but in a few instances the
role of the computer is dominant. In these cases I put my beloved computer, Shalosh B. Ekhad, as
a coauthor.
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Shalosh and I are most proud of our recent proof([27]) of John Conway’s ([Co]) Cosmological
Theorem, that concerns Conway-type ‘audioactive’ sequences whose prototype is 1, 11, 21, 1211,
111221, 312211, . . . . Here each term ‘describes’ the previous one. For example one can describe
the last term above as : “one 3, one 1, two 2’s, two 1’s”, so the next term is the string: 13112221.
Conway([Co]) proved that the length of the nth term is asymptotically Cλn, where λ is Conway’s
constant: 1.303577..., (see, e.g. [Fi]), a certain algebraic number whose minimal polynomial has
degree 71. Conway also stated that the same holds for any such sequence derived from an arbitrary
initial string (except the fixed point 22). This follows from the so-called Cosmological Theorem,
that according to Conway used to have two proofs (one by Richard Parker and himself, and another
one by Mike Guy). Both of these proofs were very long, and were subsequently lost. In [27], Ekhad
and I give a computer-proof that took more than a month to run (on a Sun workstation, running on
nice). More important than the proof itself is the methodology behind it, that should be a paradigm
for the ultimate proof of the Four Color Theorem, and many future theorems: computer-generated
rather than merely computer-assisted.

Another triumph for the computer is the proof([18]) of a conjecture of Sasha Kirillov and Anna
Melnikov ([Ki][KM]). In this case it was a dialogue with the computer. Using computer explorations,
I first found a more general statement, that was then proved by using the Maple package qEKHAD,
that implements the q-WZ method.

Another heavy-duty computer project is [35], where a Maple package, LEGO, is described, that
finds instantaneously many formulas that previously took months of human effort, and many new
ones. LEGO computes generating functions for the enumeration of many classes of ‘toy models’ for
polyominos, whose simplest case is Temperley’s expression for the generating function for vertically-
convex polyominos.

Also falling under this heading is [36], where John Noonan and I implement, extend in various
directions, and find various applications, of the powerful Goulden-Jackson Cluster method([GJ])
for counting the number of words that avoid a certain prescribed lexicon of ‘bad words’ as factors
(i.e. subwords consisting of consecutive letters).

WZ Theory

In 1996, Marko Petkovsek, Herb Wilf, and I published the book “A=B” ([21]). This book was
a dual-main-selection of the Library of Science (early summer 1996). Its Japanese translation is
about to appear, and translations to Chinese and Russian are in progress.

In [24], Petkovsek, Wilf, Istvan Nemes, and I describe how many Monthly problems are now routine,
thanks to Gosper’s algorithm, the WZ method, and Petkovsek’s algorithm HYPER.

In [20], it is shown how the WZ method could have helped Issac Newton and Samuel Pepys in a
probability problem that arose in gambling. In [4], the continuous version of the WZ method is
used to evaluate Mehta-type integrals. In [22], George Andrews’s Syndrome ([An3]) is tackled, thus
answering one of the research problems proposed in the last proposal.
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In quite a different direction, my student Tewodros Amdeberhan and I use the WZ method to find
extremely fast-converging series for ζ(3)[23], and to give Apéry-style proofs of the irrationality of
the q-analogs of log 2 and the Harmonic series ([30]), previously proved by Peter Borwein by the
use of Padé Approximants. Our irrationality measure improves on the one implied by Borwein’s
approximating sequence in the case of the q-analog of the Harmonic series, and matches it in
the case of logq 2. One of the series in [23] was used by Simon Plouffe, George Fee and others
to continuously break the record for the computation of ζ(3) to many digits, see Steve Finch’s
fascinating website ([Fi]).

In [9], it is shown how Leonard Weinstein’s short proof of the Bieberbach conjecture (first proved
by deBranges) could be streamlined, and made even shorter, by the use of the WZ method. In [1],
a WZ proof is given of Ramanujan’s formula for π, that appeared in his famous letter to Hardy.

Exposition

In [11] I describe Joe Gillis’s serendipitous discovery that lead to the currently flourishing subject
of Combinatorial Special Function Theory. In [17] I give a motivated account of Fred Galvin’s[Ga]
astounding proof of the Dinitz problem about the existence of generalized n×n Latin squares where
each entry can pick from its own prescribed set of n objects. The Math Bite [28] is an application
of mathematics to literature.

And Also...

In [2], Jane Friedman, Ira Gessel and I consider ‘fractional’ enumeration of paths. In [3], a constant-
term conjecture of Peter Forrester is proved. In [5], Dominique Foata and I give combinatorial
interpretations and proofs of the classical Capelli and Turnbull identities. In [6], it is shown how
Bernard Beauzamy and Jerome Dégot’s ([BD]) brilliant proof of the Bombieri Norm-Inequality
could be streamlined and made (essentially) ‘one-line’ by using the Chu-Vandermonde classical
binomial identity. In [8], Craig Orr and I describe how to use Brunu Buchberger’s theory of
Gröbner bases to solve discrete Dirichlet problems.

In [26] an interesting and potentially useful problem, that arose in the budding field of Combinatorial
Chemistry, is solved. In [33], the powerful and versatile Lace Expansion, due to David Brydges and
Tom Spencer, is axiomatized and generalized. Finally, [34] is an application of the algebra of linear
partial difference operators to an obsolete legal problem.
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4. List of Publications resulting from the NSF award.

1994

1. (With S.B. Ekhad) A one-line WZ proof of a formula of Ramanujan for π, in: “Geometry,
Analysis, and Mechanics” (Volume to honor Archimedes’s 2281st birthday), J. M. Rassias, ed.,
107-108. World Scientific, Singapore.

2.(With J. Friedman and I. Gessel) Talmudic lattice path counting, J. Combin. Theory Ser. A 68,
215-217.

3. Proof of q-analog of a constant term identity conjectured by Forrester, J. Combinatorial Theory
Ser. A 66, 311-312.

4. Towards a WZ proof of Mehta’s integral, SIAM J. Math. Anal. 25[Askey-Olver issue] , 812-814.

5. (With D. Foata) Combinatorial Proofs of Capelli’s and Turnbull’s Identities from Classical
Invariant Theory, Electronic J. of Combinatorics, 1 R1.

6. Chu’s 1303 identity implies Bombieri’s 1990 norm-inequality [Via an identity of Beauzamy and
Dégot], Amer. Math. Monthly 101, 894-895.

7. (With L. Ehrenpreis) Two EZ proofs of sin2 z + cos2 z = 1, Amer Math. Monthly 101, 691.

8. (With C. Orr), A computer algebra approach to the discrete Dirichlet problem, J. Symbolic
Computation 18, 87-90.

1995

9. (With S. B. Ekhad) A short and elementary, “formal calculus” proof of the Bieberbach conjecture
(after L. Weinstein), Contemporary Math 178, 113-115.

10. The J.C.P. Miller Recurrence for Exponentiating a polynomial and its q-Analog, J. Difference
Eqs. and Appls. 1, 57-60.

11. How Joe Gillis discovered Combinatorial Special Function Theory, Math. Intell. 17(2), 65-66.

1996

12. Proof of the alternating sign matrix conjecture, Elect. J. Combinatorics 3(2) [Foata Festschrift],
R13 (84 pages).

13. Proof of the refined alternating sign matrix conjecture, New York J. of Math. 2, 59-68.

14. (With D. Foata) The Graphical Major Index, J. Comp. Appl. Math. [special issue on q-series]
68, 79-101.
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15. (With J. Noonan) Counting Permutations with a prescribed number of ”forbidden” patterns,
Advances in Applied Math. 17, 381-407.

16. Reverend Charles to the aid of Major Percy and Fields-Medalist Enrico, Amer. Math. Monthly
103, 501-502.

17. The method of undetermined generalization and specialization illustrated with Fred Galvin’s
amazing proof of the Dinitz conjecture, Amer. Math. Monthly 103, 233-240.

18. An explicit formula for the number of solutions of X2 = 0 in triangular matrices over GF(q),
Elect. J. Comb. 3(1), R3.

19. Self-Avoiding Walks, the language of science, and Fibonacci numbers, J. Stat. Planning and
Inference 54, 135-138.

20. If An has 6n dyes in a box, with which he has to fling at least n sixes, then An has an easier
task than An+1, at Eaven Luck, Amer. Math. Monthly 103, 265.

21. (With M. Petkovsek and H. S. Wilf) “A=B”, AK Peters, Wellesley.

1997

22. (With S. B. Ekhad) Curing the Andrews Syndrome, J. of Difference Equations and Applications
3, xxx-xxx.

23. (With T. Amdeberhan) Hypergeometric Series Acceleration via the WZ method, Elect. J. of
Combinatorics 4(2)[Wilf Festschrift volume], R3.

24. (With I. Nemes, M. Petkovsek, and H. S. Wilf) How to do Monthly Problems on your computer,
Amer. Math. Monthly 104, 505-519.

25. Dodgson’s Determinant-Evaluation Rule Proved by TWO-TIMING MEN and WOMEN, Elect.
J. of Combinatorics 4(2), [Wilf Festschrift volume], R22.

26. A comparison of two methods for random labelings of balls by vectors of integers, Advances
in Combinatorial Methods and Applications to Probability and Statistics, N. Balakrishnan, ed.,
Birkhauser, 1997 (Mohanty Festschrift).

27. (With S. B. Ekhad) Proof of Conway’s lost cosmological theorem, Elect. Res. Announcements
of the AMS 3, 78-82.

28. Math Bite: Proof of an empirical observation made by Amos Oz’s character, Math. Magazine
70 , 291.

29. (With C. Krattenthaler) Proof of a determinant evaluation conjectured by Bombieri, Hunt, and
van der Poorten, New York J. of Math. 3, xxx-xxx.
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To Appear

30. (With T. Amdeberhan) q-Apery irrationality proofs by q-WZ Pairs, Advances in Applied
Mathematics.

31. (With D. Foata) A classic proof of a recurrence for a very classical sequence, J. Combin. Theory
Ser. A.

32. (With D. Foata) Combinatorial proofs of Bass’s evaluations of the Ihara-Selberg Zeta function
of a graph, Trans. Amer. Math. Soc..

33. The abstract lace expansion, Advances in Applied Mathematics.

34. How much should a nineteenth-century French bastard inherit, J. Difference Eq. Appl. (special
issue in honor of Gerry Ladas.).

Submitted

35. Automated counting of LEGO towers.

36. (With J. Noonan) The Goulden-Jackson cluster method: extensions, applications, and imple-
mentations.

5. Many of my papers are accompanied by Maple packages that are available, free of charge,
from my homepage http://www.math.temple.edu/~zeilberg. In addition, there are quite a
few packages that belong to forthcoming papers, or stand by themselves. Some of them are of a
rather general scope, and should be useful to researchers in combinatorics, number theory, analysis,
statistical physics, and possibly other areas.

6. A large part of the proposed research is a direct continuation of the previous research, but there
are also new directions, in which the connection is less obvious.

7. Education and Human Resources Statement.

My first Ph.D. student, Sheldon Parnes, graduated in the summer of 1993, He then became a post-
doctoral fellow at the Institute for Computational Mathematics directed by the Borwein brothers,
in Simon Fraser University. He is currently in Industry.

My second Ph.D. student, Ethan Lewis, finished in the spring of 1994, from the neighboring Uni-
versity of Pennsylvania. He was first a visiting lecturer at Haverford college, then spent two years
as a Lady Davis postdoctoral fellow at the Technion, Israel, and is currently with the National
Security Agency. My third Ph.D. student, Craig Orr, finished in the fall of 1994. He is currently
also with the National Security Agency.

In the spring of 1997, another batch of graduate students finished. John Majewicz has accepted
an Associate Professorship at the Community College of Philadelphia. John Noonan is Assistant

9



Doron Zeilberger

Professor at Mount Vernon Nazarene College, Ohio, and Tewodros Amdeberhan declined an offer
for a postdoc at Penn-State in favor of a tenure-track appointment at deVry Inst. of Tech., NJ.

All these six theses combined experimental mathematics with more theoretical investigations and
used computer algebra heavily.

Currently I have four Ph.D. candidates under my supervision: Anne Edlin, who is working on
computer-assisted proofs in the theory of formal languages, and in the process is developing a
comprehensive Maple package, NOAM, that should have many applications; Aaron Robertson,
who is using Maple to tackle problems in Ramsey theory; Akalu Tefera, who is using computer
algebra to prove constant term identities, and Melkamu Zeleke who is working on the discrete
Radon transform and covering congruences.

The research conducted by my students involves large-scale computing, and in the case of Edlin
and Tefera, should lead to Maple packages of wide interest and applicability to the mathematical
community. I am hence requesting student support, on the level of one student, that would be split
between my students, and would free them from some teaching obligations.

I am the local expert on computer algebra. In the last ten years I have been teaching both graduate
and undergraduate courses that were very well attended, in using Maple and Mathematica to do
research in mathematics. Since most of the graduate students that attend my classes are also
teaching assistants, this know-how gets transmitted to the undergraduates.

Paper [19] above was studied in a workshop for gifted high-school students conducted at MIT by
Satomi Okazaki, and one of the students, Lauren Williams (currently a Sophomore at Harvard),
used its method to write a paper([Wi]) that won third prize in the 1996 International Science Fair.

PROPOSED RESEARCH:
TARGETED “PROOF MACHINES” IN COMBINATORICS

The title for the current proposal was inspired by the following quotation of Dave Bressoud ([Br1]),
that was already used in “A=B” ([21], p. 6).

“The existence of the computer is giving impetus to the discovery of algorithms that generate
proofs. I can still hear the echoes of the collective sigh of relief that greeted the announcement,
in 1970, that there is no general algorithm to test for integer solutions to polynomial Diophantine
equations; Hilbert’s tenth problem has no solution. Yet, as I look at my own field, I see that creating
algorithms that generate proofs constitutes some of the most important mathematics being done.
The all-purpose proof machine may be dead, but tightly targeted machines are thriving.”

Bressoud continues with the following (omitted in “A=B” for obvious reasons): “One example
lies in the W-Z pairs of Herb Wilf and Doron Zeilberger that can be used to prove identities for
hypergeometric series .... This is mathematics shaped by the computer. It is exciting. Its directions
are unpredictable.”
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I propose to develop new ‘targeted proof machines’ for other kinds of identities and theorems.
While I have a fairly good idea how to proceed in the proposed areas, I am sure, that unpredictable
developments will occur that would be far more important than the specific projects proposed here.
Even more importantly, the methodology that would emerge in the process of developing specific
proof-machines for specific classes of identities and theorems, and the research style that would
necessarily develop, should contribute to the future mathematical culture, and help to make the
best out of the impending intrusion of the computer in the mathematics of the next millennium.

The Dodgson Ansatz: Automated Determinant Evaluations

Many problems in combinatorics (e.g. [An2]), analysis (e.g. [Di]), number theory (e.g. [BHP]) and
elsewhere (e.g. string theory! [SW]), reduce to the explicit evaluation of a determinant of the form:

A(n) := det (ai,j)1≤i,j≤n ,

where ai,j is an explicitly given binomial coefficient or sum of binomial coefficients. In quite a few
known cases, A(n) is known, or conjectured, to be ‘nice’ in the sense that the ratio A(n)/A(n− 1)
is ‘closed form’. The method initiated in [16], and further used in the joint paper of my student
Tewodros Amdeberhan and my computer Shalosh B. Ekhad ([AE]), and further extended and
explored by Marko Petkovsek([Pe]) goes as follows. Try to conjecture a ‘nice’ formula for the more
general quantity

B(n; r, s) := det(ai,j) (r ≤ i ≤ n+ r − 1 , s ≤ j ≤ n+ s− 1) .

Once conjectured, the proof of the conjecture becomes routine thanks to Dodgson’s rule that implies
the non-linear recurrence:

B(n; r, s) =
B(n− 1; r, s)B(n− 1; r + 1, s+ 1)−B(n− 1; r + 1, s)B(n− 1; r, s+ 1)

B(n− 2; r + 1, s+ 1)
. (REC)

Whenever B(n; r, s) turns out to be ‘nice’, the nice expression can be found (at first conjecturally),
by the computer, by using, for example, the gfun Maple package of Brunu Salvy and Paul Zimmer-
mann. Then the formal proof can also be mechanized, by verifying (REC). Finally, to get A(n),
one substitutes r = 1, s = 1 into B(n; r, s), since, of course, A(n) = B(n; 1, 1). All this has already
been implemented in the Maple package DODGSON that is available from my homepage.

Unfortunately, there are many cases where A(n) is known (or conjectured) to be ‘nice’, but the more
general B(n; r, s) does not seem to be ‘nice’ and probably isn’t (e.g. [An1][An2]). I believe that
this failing can be overcome by a more inclusive definition of ‘nice’. I am sure that in many cases
(and perhaps even all), B(n; r, s) is ‘semi-nice’ in the sense that the ratios B(n; r, s)/B(n− 1; r, s),
B(n; r, s)/B(n; r− 1, s), and B(n; r, s)/B(n; r, s− 1) are no longer ‘closed-form’ but are holonomic
(i.e. P-recursive, which is to say that they satisfy linear recurrences with polynomial coefficients
in each of their variables). Since the Holonomic Ansatz is purely decidable ([Sta1],[Ze],[Ca]), and

11



Doron Zeilberger

one can multiply and add there, it follows that once the defining linear recurrences for the above
ratios are ‘guessed’ (by the computer, of course), then the computer should be able to verify its
own conjecture by verifying the non-linear recurrence (REC). Finally it should get the recurrence
for A(n)/A(n− 1), where, as before, A(n) = B(n; 1, 1), and prove the conjectured expression.

In the ultimate algorithm, all the user would have to do is enter ai,j , and the rest would be done
by the computer: the empirical guess, and its proof. A natural candidate that should work (at
least in principle, the memory consumption might well prove to be excessive), is the evaluation
of John Stembridge’s[Ste] determinant for the enumeration of totally symmetric plane partitions
(TSPP). This determinant was evaluated, by ingenious human means, by Stembridge himself ([Ste]).
Stembridge also has a determinant for the still open q−enumeration. If all goes well (barring running
out of time or memory), the proposed algorithm should do it.

The Chomsky Ansatz: Fitting Grammars into Combinatorial Families

Many combinatorial families can be realized as formal languages. This was the credo of the great
combinatorialist and theoretical computer-scientist Marco Schützenberger, that was used to great
advantage by the ‘École Bordelaise’ (e.g. [Vi],[DV],[Bo]). In some of the work of the Bordeaux
school, computer algebra was used, but only after the grammar was discovered (by humans).

I propose to go one step beyond. Have the computer ‘guess the grammar’, empirically, and then
prove that it indeed generates the combinatorial family, and finally, using the grammar, the com-
puter should be able to set up the set of equations for the generating functions (in case the grammar
is non-ambiguous), and finally solve the system. Everything should be done automatically. All that
the user would have to do is define the combinatorial family (in some computer-readable format,
of course). The Maple package DIKDUK, available from my homepage, is still very preliminary, and
only covers type-3 grammars. I hope to extend it to (at least) type-2 (i.e. context-free) grammars.

The Multi-Variable Rational Generating Function Ansatz

Suppose that we have a ‘hard-to-count’ combinatorial family A(n), where it is desired to obtain
information (and if possible, a ‘formula’) for a(n) := |A(n)|. In many cases one is able to partition
A(n) into subsets

A(n) =
⋃

(a1,...,ak)∈R(n)

B(n; a1, . . . , ak) ,

where k is fixed, and R(n) is a well-defined subset of the discrete k−dimensional lattice. Then,
because of the extra elbow-room, one can often set up linear partial difference equations (with
constant coefficients) for b(n; a1, . . . , ak) := |B(n; a1, . . . , ak)| which translates into an algebraic
equation for the generating function:

f(z;x1, . . . , xk) =
∑

n,a1,...,ak≥0

b(n; a1, . . . , ak)znxa1
1 · · ·x

ak
k ,

that could often be solved. Finally, all we have to do is translate this information for a(n).
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Here is a trivial example. Let’s try and count the number of lattice paths in the plane from (0, 0)
to (n, n). Let’s call this a(n). This is ‘hard to count’. Consider instead the more general problem
of counting these paths from (0, 0) to (m, p), let’s call these number b(m, p). Then, of course

b(m, p) = b(m− 1, p) + b(m, p− 1) , b(0, p) = 1, b(m, 0) = 1 ,

from which
∑
m,p≥0 b(m, p)x

myp = 1/(1 − x − y), and finally a(n) = b(n, n) = coeff. of xnyn in
1/(1− x− y).

In this trivial case we know that b(m, p) =
(
m+p
m

)
, and a(n) =

(
2n
n

)
, but in the general case one

should not expect a closed-form expression for the b(n; a1, . . . , ak), only for their generating function,
which would entail a certain constant-term expression for a(n), from which the WZ method can
crank out a linear recurrence with polynomial coefficients.

Eventually all this should be done completely automatically, once the framework has been specified.
It seems that the enumeration of permutations with forbidden patterns (the theory of Wilf classes)
should be amenable to the present approach.

Combinatorial Combinatorics

One of the recent breakthroughs in the pharmaceutical industry is Combinatorial Chemistry ([PE97]).
The idea there is to automatically generate a large amount of related compounds, and then test
them for biological activity.

I believe that this idea can be also used in combinatorics. Many proofs in combinatorics rely on the
construction of ‘good’ structures. With the computer, it should be an easy task to generate a large
‘library’ of candidate structures, and look for a successful one. One is then confronted with the
age-old ‘needle in the haystack’ problem. This can be tackled with either brute force, backtracking,
simulated annealing, or genetic algorithms. To this arsenal I propose to add the mathematical
analog of the split and mix method from combinatorial chemistry, that I will now briefly recall (see
[PE], and its references, for more details).

Suppose that we have three kinds of related components Ai (i = 1, ..., a), Bj (j = 1, ..., b), and
Ck (k = 1, ..., c). We would like to test all the abc compounds (Ai, Bj , Ck). If a, b, and c are
large it is too costly to test each of these abc resulting compounds separately. The split-and-mix
method consists of putting all of the A’s in one big pot and mixing well. Then one throws in all
the B’s, mixing well once again. Then the resulting brew is split into c separate test tubes, each
containing 1/c of the AB mixture mixed with one of the Ck’s (k = 1, . . . , c). Then each of the c
test-tubes is tested for ‘biological activity’ and the best Ck, let’s call it Ck0 is found. Then the
process is repeated with the B′s, (where only Ck0 is to be used), and the best Bj , let’s call it Bj0
is used. Finally the best Ai to add to the Bj0 , Ck0 mixture is chosen, Let’s call it i0. The winning
compound is Ai0Bj0Ck0 . So instead of making abc tests we only had to make a+ b+ c of them. Of
course, optimality is no longer guaranteed (unless the biological activity is the (weighted) sum of
the activities of its components), but hopefully one would get close.
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In the above we only used three kinds of components {Ai}, {Bj}, {Ck} for ease of exposition.
The analogous process for any number of related components {A(1)

i1
}, {A(2)

i2
}, . . . , {A(r)

ir
}, with i1 =

1, . . . , a1 ; , . . . , ; ir = 1, . . . , ar should be clear.

Let’s now see how this translates to combinatorial searching. Suppose that we have a certain ‘fitness
function’ f , defined on binary vectors (i1, . . . , in), and it is desired to find the vector on which f

is minimal. The naive algorithm is exponential (one has to make 2n evaluations). Simulated
annealing and genetic algorithms fare much better, at least for near-optimality. However, I believe
that split-and-mix should be given a fair hearing! Here is how it goes.

At the rth step, suppose that (I1, . . . , Ir−1) turned out to be the best choice from the previous step.
Compute the average of f over all n-component binary vectors that start with (I1, . . . , Ir−1, 0), and
the average over those vectors that start with (I1, . . . , Ir−1, 1). If the former is smaller, let Ir := 0,
while if the latter is smaller, let Ir := 1.

At first sight it seems that there is no gain, since computing the average, from the definition,
involves 2n−r evaluations of f . But, the beauty is that computing the average of a function over
a combinatorial family can be done cleverly, by the old trick of changing the order of summation.
For example let f(v) be the sum of the entries of the binary vector v, i.e. the number of ones.
Then (χ(statement) is 0 or 1 according to whether the statement is false or true):

∑
v∈{0,1}n

f(v) =
∑

v∈{0,1}n

n∑
k=1

χ(vk = 1) =
n∑
k=1

∑
v∈{0,1}n,vk=1

1 =
n∑
k=1

2n−1 = n2n−1 .

Hence the average is n/2 (in this utterly trivial case this also follows from symmetry). The same
argument however applies in much more non-trivial cases. I propose to apply the method to find
‘good’ van-der-Waerden sequences and other extremal combinatorial objects from Ramsey theory.

This is all very preliminary, but it is worth a try. Perhaps combining this with genetic algorithms
and/or simulated annealing would prove fruitful. Besides, the variations are endless. For example,
one can try and add at each stage ‘chunks’ to the vectors, rather than a single component.

Haiman’s “Diagonal Harmonics” Conjecture

In addition to the above computer-heavy research, I hope to also investigate, in collaboration with
Dominique Foata (who is a consultant to this proposal), another problem, where the computer
should only serve a secondary role, or be absent altogether. The problem is Mark Haiman’s[Ha]
notorious (n+ 1)n−1 conjecture, which I will now describe.

Let In be the ideal in K[x1, . . . , xn] generated by the non-constant symmetric polynomials. It is
well known, and easy to see, that the quotient ring K[x1, . . . , xn]/In is a finite-dimensional vector
space, and that its dimension is n!.

Now, let Jn be the ideal, in K[x1, . . . , xn, y1, . . . , yn] generated by the non-constant ‘diagonally-
symmetric’ polynomials (i.e. polynomials invariant under the action p(x1, . . . , xn; y1, . . . , yn) →
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p(xπ(1), . . . , xπ(n); yπ(1), . . . , yπ(n))), for any π in the symmetric group on n elements). Once again,
it is easy to see that the quotient ring K[x1, . . . , xn, y1, . . . , yn]/Jn is a finite-dimensional vector
space. Mark Haiman ([Ha]) conjectured that this dimension equals (n+ 1)n−1, and he verified his
conjecture for n ≤ 7.

Dominique Foata and I have started working on this problem this summer, and we have made some
encouraging progress, that should at least give new upper bounds for the desired dimension, and
who knows? perhaps prove it completely. The approach is to compute the ‘Gröbner basis’ of the
ideal Jn, but not by computer (at present Maple, and even Macaulay, can only do it for specific n),
but generally for general n. Of course, the only hope is to define the basis recursively. Once we have
a global description for the Gröbner basis, one should be able to describe its leading monomials,
from which one would hopefully get a unified (albeit recursive) description of the leading monomials,
and the problem would be reduced to a hopefully tractable problem of counting lattice points.

Let’s illustrate the above plan with the simple classical case of In. It is easy to show that the
following is a Gröbner basis: {h1(x1, . . . , xn), h2(x2, . . . , xn), . . . , hn(xn)}. Here hi are the complete
symmetric functions, that may be defined in terms of the generating function

∞∑
i=0

hi(y1, . . . , ym)ti =
m∏
j=1

(1− yjt)−1 .

The leading monomials of the above basis (with respect to the purely lexicographic order induced
by x1 > x2 > . . . > xn) are {x1, x

2
2, . . . , x

n
n}, hence a basis for the quotient ring can be formed from

the monomials of the form xa1
1 xa2

2 · · ·xann , with 0 ≤ a1 < 1, 0 ≤ a2 < 2, . . . , 0 ≤ an < n. It follows
that the dimension of the desired quotient ring is indeed n!.

The Haiman case is much more involved, but we believe that it is still tractable. We take as ‘charter
members’ of our Gröbner basis all the polarizations of the hr(xr, . . . , xn) (i.e. Hr,s :=Coeff of ts in
hr(xr + tyr, . . . , xn + tyn), for 1 ≤ r ≤ n, 0 ≤ s ≤ r). We can show that they survive to the end.
But in addition we also have the ‘first-generation’, obtained by appending those S− polynomials
of charter members that do not reduce to 0. This we can characterize completely. At present we
are trying to characterize the ‘second generation’, and we hope to go on to the end. We conjecture
that there are n− 2 generations altogether.

Each member of the ultimate (and also intermediate) Gröbner basis can be labeled by a binary tree
whose leaves are the charter members above. This polynomial is the reduction of the S-polynomial
of the polynomials belonging to the two subtrees.

We hope to characterize the surviving S-polynomials in terms of their corresponding trees, and
then to find the lead-monomials, which should yield the exact dimension (that is, (n + 1)n−1, if
Haiman’s prediction is correct).
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