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Summary of Results from Previous NSF Support: DMS 0901226

1. The current NSF award number is DMS-0901226

(http://www.nsf.gov/awardsearch/showAward?AWD ID=0901226)

for the period 2009-2013 (five summers), totaling $344,191 (including the supplements for graduate
student support).

2. Its title is: “Rigorous Experimental Combinatorics”.

3. Summary of the results of the completed work

It is often the case, in scientific research (and elsewhere), that the whole is larger than the sum of
its parts. I believe that in the case of my own research, and of my students, the whole is much
larger than the sum of its parts, not that the parts have anything to be ashamed of.

The Whole

[This preamble is the same as in my last grant proposal]

My research students and I continued to practice a new research methodology, that can be loosely
called rigorous experimental mathematics. It has something in common with both “mainstream”
experimental mathematics (as preached by the Borwein brothers, David Bailey, Victor Moll, and
their collaborators, see e.g. the masterpiece [BB], and the recent collection [BBCGLM]), and
automated theorem proving (as practiced in computational logic), but is definitely distinct from
them. It is based on what I call the ansatz ansatz ([Z1][Z2], see [Z3] for a philosophical discussion),
described briefly in my interview with (at the time) MAA president Joe Gallian[Gal]. In this
methodology, one “teaches” the computer how to “conjecture an answer” to a problem, and then
“teaches” that very same computer to prove its own conjectures rigorously. The novelty is that both
the conjecturing and the proving are automatically done by the computer. This does not mean
that human mathematicians are superfluous. Quite the contrary! Someone has to “teach” the
computer, i.e. design algorithms and meta-algorithms for both proving and conjecturing. In my
experience, this act of “teaching” the computer how to do mathematics is at least as challenging as
doing mathematics “by hand”, and in my humble opinion, time much better spent, since the vast
potential of the computer is still very underutilized and underrated, and it is important to have
mathematicians, like myself and my students, who are dedicated to that activity, that I believe will
soon revolutionize mathematics.

The Parts

In the last five years, many in collaboration with my students and other researchers, I published
31 research articles in peer-reviewed journals and refereed conference proceedings. These can be
viewed (with links to the actual papers) in the webpage

http://www.math.rutgers.edu/~zeilberg/papers1.html .

In addition there are about fifty new items (since 2009) in the “Personal Journal of Shalosh B.
Ekhad and Doron Zeilberger”, a freely available on-line journal, see
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http://www.math.rutgers.edu/~zeilberg/pj.html .

While some of the entries there are “silly” (or links to videotaped lectures), most of them are
substantial, usually heavily computational, research articles (in collaboration with my beloved
silicon servant, Shalosh B. Ekhad). All my papers that are authored only by me and/or Shalosh
B. Ekhad (who is not interested in promotion or tenure) no longer get submitted to official peer-
reviewed journals, that in my humble opinion will soon be obsolete.

But, the crux of my current activity, that I propose to continue in this proposal, in a more system-
atic and ‘professional’ way, is the development-and implementation of-algorithms for computer-
generated and computer-assisted (usually rigorous, but sometimes semi-rigorous, and even non-
rigorous) discovery of new, interesting, and deep results in enumerative combinatorics, number
theory, and other areas where symbolic computation promises to be crucial. Most of my papers are
accompanied by often sophisticated Maple packages, all freely available from

http://www.math.rutgers.edu/~zeilberg/programs.html .

These Maple packages (53 new ones since 2009) are not only interesting, and (at least potentially)
useful, for their own sake, but also constitute many case studies for the efficient use of symbolic
computation in combinatorics, and elsewhere. Unfortunately, they are written in a programming
language that requires a commercial software, MapleTM . One of my dreams is to learn SAGE well
enough to be able to start coding in it, but more realistically, interest my students, and other people,
to write SAGE versions. Also, since I am not a professional software developer, the organization is
amateurish, and could use a more professional handling.

Some highlights

Perhaps the most striking accomplishment([KKZ]), in collaboration with Manuel Kauers and Christoph
Koutschan, is the computer-assisted proof of the long-standing q-TSPP conjecture, published in the
Proceedings of the National Academy of Science :

http://www.pnas.org/content/early/2011/01/20/1019186108.abstract .

This conjecture, made independently, more than thirty years ago, by George Andrews and David
Robbins, was the only remaining ‘survivor’ in Richard Stanley’s influential ‘baker’s dozen’ list of
conjectures([St]), and resisted the efforts of the greatest combinatorial enumerators. Our proof
showed the symbiotic relationship between human conceptual insight, human computational and
algorithm-development insight, and the sheer power of computers, as it relied on a beautiful theorem
of Soichi Okada[0] that expressed the desired generating function in terms of a certain explicit
determinant, that nevertheless resisted the efforts of the greatest human determinant-evaluators
like Christian Krattenthaler([K1][K2]). It used my non-trivial extension ([Z2]) of the Wilf-Zeilberger
algorithmic proof theory ([PWZ] [WZ]) to the context of determinant evaluations.

This discovery was written up in the Austrian and Swiss general media, as well as in Pour La
Science (the French analog of Scientific American)

(http://www.pourlascience.fr/ewb pages/a/actualite-un-theoreme-pour-des-empilements-
de-cubes-26504.php).

This method was recently extended to the evaluation of Pfaffians in a beautiful paper [KT] by my
former student Thotsaporn “Aek” Thanatipanonda and Christoph Koutschan, proving yet more
intriguing conjectures of Krattenthaler and George Andrews.

In a different direction, Andrew V. Sills and I ([SZ]) refuted a long-standing conjecture of the great
20th-century number theorist, Hans Rademacher,

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hans.html .
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While our disproof is not fully rigorous, it is more convincing than many humanly-provably allegedly
rigorously- proved theorems, that rely on (often flawed) human peer-reviews.

Another article that I am fond of, is [EGZ] (joint with Shalosh B. Ekhad and Evangelos Georgiadis),
that, I believe, has potential far-reaching applications to mathematical finance.

In yet another direction([Z4]) is the computerized discovery (and proof!) of 144 new Collatz-like
theorems that may one day, lead, who knows?, to a proof (or disproof!) of the notorious 3x + 1
conjecture.

Going completely out of combinatorics and number theory is the article([HZ]) that my former stu-
dent, Emilie Hogan, and I wrote, about computerized proofs of theorems about Global Asymptotic
Stability of Discrete Dynamical Systems.

4. List of Publications resulting from the previous NSF award 2009-2013

See: http://www.math.rutgers.edu/~zeilberg/papers1.html (for publications in peer-reviewed
journals) and also
http://www.math.rutgers.edu/~zeilberg/pj.html , mentioned above.

5. As already mentioned above, most of my papers are accompanied by Maple packages that are
available, free of charge, from the webpage

http://www.math.rutgers.edu/~zeilberg/programs.html .

Some of them are of a rather general scope, and should be useful to researchers in combinatorics,
number theory, analysis, statistics, statistical physics, and possibly other areas. They are all freely
available source-code.

6. A large part of the proposed research is a direct continuation of the previous research, but there
are also new directions, in which the connection is less obvious.

7. Education and Human Resources Statement

Specific Graduate Education: Ph.D. students

During the discussed period (2009-2013), five students received their Ph.D. degree under my guid-
ance: Eric Rowland (2009, currently at University of Québec at Montréal), Paul Raff (2009, Applied
Researcher, Big Data Mining at Microsoft), Emilie Hogan (2011, currently a permanent computa-
tional mathematical scientist at Pacific Northwest Laboratory), Andrew Baxter (2011, currently at
Penn State), and Brian Nakamura (2013, currently a postdoc at Dimacs-CCICADA).

All their defenses have been videotaped and are available on-line, see the links in the webpage:

http://www.math.rutgers.edu/~zeilberg/banim.html , where one can also find links to
the actual theses.

In addition, I have a very talented disciple, Edinah Gnang, http://paul.rutgers.edu/~gnang/,
who is not my official student, since his PhD is in computer science, but with whom I collab-
orated([GZ]) (and still do), and who is currently (AY 2013-2014) at the Institute for Advanced
Study in Princeton.

Currently I have two official graduate students, Matthew Russell (joint with Vladimir Retakh), and
Nathaniel Shar, who are making very good progress, and a prospective student, Nathan Fox.
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General Graduate Education

Eleven years ago, I started teaching a graduate course called Experimental Mathematics that in
addition to making the students ‘computer-algebra whizes’ and skilled and sophisticated Maple
programmers, also implicitly introduces them to the methodology of doing computer experiments
to rigorously solve open problems. To see detailed logs of what has been done in the various classes
(each time dedicated to a different topic!), see the links in the webpage

http://www.math.rutgers.edu/~zeilberg/teaching.html .

Quite a few of the students, of other advisors, who took this class told me how useful they found
the computer-algebra skills that they learned in my class, and indirectly, this also benefits their
advisors, who are mostly computer illiterate. Speaking of ‘Experimental Mathematics’, my students
and I are organizing a weekly seminar by that name that is very well-attended, both by faculty
and graduate students, and that has a great diversity of speakers, from George Andrews (past
president of the AMS), Jon Borwein (of AGM and Experimental Math fame), Freeman Dyson (of
QED fame), Tom Hales (of Kepler fame), Neeraj Kayal(the ‘K’ of AKS, of PRIME in P fame),
John Nash (of Beautiful Mind fame), Neil Sloane (of OEIS fame), Noga Alon (of the Probabilistic
Method fame), Gil Kalai (of convexity fame), Avi Wigderson (of NP vs. P (and Zero-Knowledge
proof) fame), Robert Trivers (of Altruism fame) to just drop a few names, all the way to first-year
graduate students. In fact, on Nov. 7, 2013, we are going to have a talk by a high school student,
William Kang. Starting Winter 2010, most of the lectures are videotaped and uploaded to the
internet, where the whole world can benefit from them. See the links to the archives from the
seminar page http://www.math.rutgers.edu/~russell2/expmath/.

Undergraduate Education

I take my undergraduate teaching very seriously, and post on-line lecture notes that I believe are
also used by students at other universities. See my homepage
http://www.math.rutgers.edu/~zeilberg/ for links.

Implicitly, my former PhD student, Lara Pudwell (http://faculty.valpo.edu/lpudwell/), has
designed a pioneering undergraduate course, called Experimental Mathematics, inspired by my
Rutgers graduate course, that I hope would be emulated at other colleges and universities.

PROPOSED RESEARCH: Automated Enumerative Combinatorics

I. Towards a General Theory of Automated Enumeration based on Enumeration
Schemes

I.0 The Painful Dichotomy between the Doable and Undoable

We humans pride ourselves on the great things that we did do, and all the seemingly hard problems
that we have solved. But, alas, the number of problems that we can not do, and the number of
numbers that we can not compute (and never will!) far outnumber those problems that we can
solve and those numbers that we can compute.

While writing this, I opened another window on my computer, running MapleTM , and typed

with(linalg):ra:=rand(0..1): A:=[seq([seq(ra(),i=1..15)],j=1..15)]: time(det(A)), time(permanent(A));

and got 0.004, 0.844 . Then I typed

with(linalg):ra:=rand(0..1): A:=[seq([seq(ra(),i=1..17)],j=1..17)]: time(det(A)), time(permanent(A));

and got 0.008, 5.544.

Then I typed
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with(linalg):ra:=rand(0..1): A:=[seq([seq(ra(),i=1..20)],j=1..20)]: time(det(A)), time(permanent(A));

and got 0.012, 102.478.

For the readers of this proposal who are not familiar with Maple, let me explain. The command
‘with(linalg)’, loads the linear algebra built-in Maple package, linalg, that has the commands
det and permanent, for computing the determinant and permanent of a matrix, so once a matrix A
has been defined, ‘det(A);’ gives its determinant, and ‘permanent(A);’ gives its permanent. The
command ‘ra:=rand(0..1)’=, generates a (pseudo-) random number generator, so once defined,
‘ra();’ outputs either 0 or 1, each with probability 1

2 . Hence typing

A:=[seq([seq(ra(),i=1..n)],j=1..n)]:

for any positive integer n, generates a random 0− 1 matrix with roughly as many 0’s as 1’s.

Finally for any command, ‘time(command);’ returns the time it takes to execute command rather
then the output of the command itself.

What Maple is trying to tell us is that if we take a random 15 × 15 0 − 1 matrix, with roughly
as many 0’s as 1’s, it takes it 0.004 seconds to compute the determinant and 0.844 seconds to
compute the permanent. The analogous computation for a random 17× 17 matrix takes 0.008 and
5.544 seconds respectively, and for a 20×20 matrix it takes 0.012 and 102.478 seconds respectively.
Maple can still do the determinant of a 300× 300 matrix in reasonable time. For example

with(linalg):ra:=rand(0..1): A:=[seq([seq(ra(),i=1..300)],j=1..300)]: time(det(A));

returns 137.640, indicating that it took it 137.640 seconds. On the other hand

with(linalg):ra:=rand(0..1): A:=[seq([seq(ra(),i=1..300)],j=1..300)]: time(permanent(A));

would take several zillion years!

The reason, as we all know (at least since Gauss, but implicitly much longer), is that computing
determinants, of numerical matrices, is fast. On the other hand, the fastest known algorithms for
computing the permanent of a numerical matrix take exponential time (the naive algorithm takes
about (n + 1)! operations, of course, and that is worse than exponential, but an algorithm due to
Ryser is ‘only’ exponential, see the wikipedia entry).

In a famous seminal paper, written in 1979, Leslie Valiant proved that computing permanents is a
#P-complete task, meaning, in analogy with the notion of NP-completeness for decision problems,
that it is ‘too good to be true’ that a fast (polynomial time) algorithm for computing permanents
would ever be found. Of course, no one has (yet) any clue on how to prove this impossibility, but
no one in his or her (or its) right mind doubts this impossibility.

While the problem of computing the permanent of a 0 − 1 matrix can be, strictly speaking, con-
sidered a problem in enumeration, that inputs an arbitrary bipartite graph (with an edge between
Mr i and Ms. j iff Aij = 1), and outputs the total number of perfect matchings (note that the
analogous decision problem, deciding whether there exists a matching, i.e. whether permanent(A)
is strictly positive, is famously (thanks to Philip Hall) polynomial time), is too ‘general’ to qualify
as a genuine problem in (traditional) enumerative combinatorics. A typical problem in enumerative
combinatorics has usually one, or at most, few, inputs, usually non-negative integers, let’s call it n
(or (n1, n2, . . . , )) and a description of a natural combinatorial set A(n) (or A(n1, n2, . . .)) describing
combinatorial objects satisfying a certain set conditions that depend on n (or (n1, n2, . . .)).

Of course, from a purely logical point of view, one can formulate the problem of computing the
permanent of a general n × n 0 − 1 matrix by only using two integer arguments, n and m, where
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m is an integer between 0 and 2n
2 − 1 whose binary representation yield the n2 entries of the

matrix read by rows, but this is very artificial. Instead let’s consider three case studies of natural
enumeration problems.

I.1 First Case Study: Lattice Animals vs. Directed Lattice Animals

A (2D) (fixed) lattice animal (alias a polyomino) of size n is any connected set of lattice points
on the square grid, up to translation-equivalence. For the sake of definiteness let the leftmost
points have coordinate y = 0, and amongst those, let the lowest point be the origin. It is sequence
http://oeis.org/A001168 in the celebrated OEIS, and at this time of writing only 56 terms are
known, computed by F. Jensen, see http://oeis.org/A001168/b001168.txt. How many fixed
lattice animals are there with 1000 points?, no one knows, and, most probably, no one will ever
know, even though, once found, it would fit on half a screen.

Now define a directed animal to be a lattice animal such that every point is reachable from the
origin, (0, 0) by a path that only uses eastbound unit steps and northbound unit steps. Superficially
the problem of enumerating directed animals does not seem any easier than the former, but, there is
a nice explicit expression (quoted in http://oeis.org/A005773), due to Dhar, for the generating
function

∞∑
n=0

a(n)xn =
2x

3x− 1 +
√

1− 2x+ 3x2
,

that easily enables Maple to compute a(1000). In fact, typing into a Maple session

coeff(taylor(2*x/(3*x-1+sqrt(1-2*x-3*x**2)),x=0,1003),x,1000);

immediately yields a certain 476-digit integer (starting with 1361733190 . . . ).

An even faster way would be to use the supplied three-term recurrence

na(n) = 2na(n− 1) + 3(n− 2) a(n− 2) , a(0) = 1 , a(1) = 1 .

What makes directed animals so easy to count, while unrestricted animals are seemingly (and most
probably) intractable?

A beautiful derivation of Dhar’s formula was given by Bétréma and Penaud[BeP] and exposited in
[Z5]. What made things work out was a subtle, but a posteriori almost-trivial, decomposition that
mapped a directed animal into smaller directed animals, thereby getting a (non-linear) recurrence.
So there was a scheme that expressed a(n) in terms of a(i) for i < n. No such analogous scheme is
known for the original lattice animals, and I am (almost) sure, that none exists.

Xavier Viennot showed that counting directed lattice animals is equivalent to counting certain
domino towers. Once the idea behind the [BeP] proof was made clear, I taught it to my computer,
and it was able to derive explicit generating functions for many, far more complicated, families, see
[Z8].

I.2 Second Case Study: Enumerating Pattern-Avoiding Permutations

The subject of pattern-avoiding permutations, pioneered by Herbert Wilf, Rodica Simion, and
Richard Stanley, is currently a very active field, with an annual conference dedicated to it. For a
beautiful, and very lucid introduction, see Chapter 4 of Miklós Bóna’s book [Bo1], and the wikipedia
entry http://en.wikipedia.org/wiki/Permutation pattern , initiated, and largely written, by
my former student, Vince Vatter.

Let’s recall what it means for a permutation p, of length n, to contain a pattern q of length k (with
k ≤ n), by citing Definition 4.1 of [Bo1].
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Definition: Let q = (q1, q2, . . . , qk) ∈ Sk be a permutation, and let k ≤ n. We say that the
permutation p = (p1, p2, . . . , pn) contains q as a pattern if there are k entries pi1 , pi2 , . . . , pik in p
so that i1 < i2 < . . . < ik, and pia < pib if and only of qa < qb. Otherwise we say that p avoids q.

For example, the permutation 3451267 avoids the pattern 321 as it does not contain a decreasing
subsequence of length 3. It contains the pattern 2134 as shown by the entries 4267.

It is well-known (see there) that the number of 123-avoiding permutations of length n, as well
as the number of 132-avoiding permutations, are both given by the ubiquitous Catalan numbers
(2n)!/(n!(n + 1)!), http://oeis.org/A000108. When two patterns yield the same enumeration,
they are said to be Wilf-equivalent, so the patterns 123 and 132 are Wilf-equivalent.

It is also well-known that there are only three Wilf classes for patterns of length 4: 1342, 1234, and
1324, all the remaining 4!− 3 = 21 patterns are Wilf-equivalent to one of these, either trivially or
non-trivially (thanks to theorems of Julian West and Zvezdelina Stankova).

The number of 1234-avoiding permutations of lenght n has been derived by Ira Gessel [G] and is
given in http://oeis.org/A005802, with an explicit formula that enables one to compute as many
terms as desired, and makes the computation of a(10000) (for example) almost immediate (on a
fast computer).

Seven years later, Miklós Bóna derived an explicit, and fast, formula for the number of 1342-avoiding
permutations of lenght n, and it is given in http://oeis.org/A022558. Perhaps the fastest way
to find the first 10000 terms (say) is via the recurrence that is implied by Bóna’s formula

na(n) = (7n− 22) a(n− 1) + 4(2n− 1) a(n− 2) , a(0) = 1 , a(1) = 1 .

But, in an often-quoted claim that I once made

“Not even God knows the number of 1324-avoiding permutations of length 1000” .

According to Sloane’s OEIS http://oeis.org/A061552/b061552.txt, there are currently only
25 terms known. Very recently (in preparation), my former student, Brian Nakamura, together
with Fredrik Johansson, in a computational tour-de-force, computed seven more terms, using an
extension of the functional equation approach developed in [NZ].

The reason that 1234-avoiding and 1342-avoiding permutation do have ‘nice’ formulas, that enables
one to easily compute the first 10000, say, terms, is that they posses enumeration schemes and
a hidden recursive structure. In the case of the former, this is made explicit in the notion of
enumeration scheme that I introduced in [Z6], and that was vastly extended by Vince Vatter[V]
(see also [Z7]). These lead to linear recurrences.

In the case of 1342-avoiding permutations, a careful reading of [Bo2] shows that, hidden behind
the argument, is (another kind) of scheme that leads to a non-linear recurrence, and hence to an
algebraic generating function. Since this is fairly complicated, let’s illustrate it in terms of the far
simpler enumeration of 132-avoiding permutation.

Given a permutation π, of {1, 2, . . . , n} that avoids the pattern 132, let n be at the ith place, i.e.
πi = n. Then {π1, . . . , πi−1} must consist of the i−1-largest remaining entries, {n−i+1, . . . , n−1},
and {πi+1, . . . , πn} must consist of the n − i smallest entries {1, 2, . . . , n − i}, or else there would
emerge a 132 pattern. Of course both π1, . . . , πi−1 and πi+1, . . . , πn must be 132-avoiding as well,
so we have the non-linear recurrence

a(n) =
n∑
i=1

a(i− 1)a(n− i) ,

that implies that a(n) are the Catalan numbers.
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I am sure that this kind of argument can be ‘taught’ to a computer, who would be able to handle
much more complicated scenarios. I believe that it should be possible to fuse both kinds of recur-
rences, and arrive at a formalized, yet-more general, notion of enumeration scheme, that of course
should also work for multiple patterns.

Once there is such a scheme, already existing Maple packages, available from my website, can
automatically handle the sequences, and derive, recurrence relations, asymptotics, and algorithms
for random generation.

Once a general notion of enumeration scheme, that would include both linear and non-linear recur-
rences, would be defined and implemented, it would hopefully lead to insight that would explain
why the enumeration of 1324-avoiding permutations is intractable.

I. 3 Third Case Study: Automatic Counting of generalized Ménages permutations

In chapters 7 and 8 of his classic book([R]), the great combinatorial enumerator, John Riordan,
develops a beautiful theory for enumerating permutations with restricted position, using rook poly-
nomials. The simplest instance is the enumeration of derangements, i.e. permutations π such that
πi− i 6= 0 (for 1 ≤ i ≤ n) . The next case, of Ménages permutation is (essentially) counting permu-
tations for which πi− i 6= 0, 1. The first satisfactory formula was given by Touchard in 1934. In an
unpublished 1975 Bell Labs internal publication (recently kindly uploaded by Neil Sloane), John
Riordan spends lots of pages enumerating permutations for which (for 1 ≤ i ≤ n) πi − i 6= 0, 1, 2,
and things start to get complicated for humans. In a still under-construction Maple package,

http://www.math.rutgers.edu/~zeilberg/tokhniot/MENAGES ,

that would hopefully accompany a forthcoming paper, I ‘taught’ the computer how to derive such
formulas for an arbitrary finite set S. In other words, the user inputs a set, S, of integers (possi-
bly including negative, as well as positive entries) and would get a (possibly complicated) linear
recurrence equation with polynomial coefficients satisfied by enumerating sequence for the number
of permutations of length n such that, for all i between 1 and n, πi − i 6∈ S.

A typical output file can be viewed here:

http://www.math.rutgers.edu/~zeilberg/tokhniot/oMENAGES3 .

I’d like to emphasize that the (still under-construction) Maple package MENAGES contains numerous
subpackages, and everything is streamlined. First there is a complete automation of computing
generating functions for rook-polynomials for the given board, let’s call it R(t, z). Then the quantity
itself, using Riordan’s general theory of rook polynomials (thanks to Euler’s famous

∫∞
0
tn e−t dt =

n!) can be written as

a(n) =
1

2πi

∫ ∞
0

∫
|z|=1

R(−t, zt )
zn+1

e−t dz dt .

Now one uses WZ theory (specifically the so-called Multi-Almkvist-Zeilberger algorithm imple-
mented in the Maple package

http://www.math.rutgers.edu/~zeilberg/tokhniot/MultiAlmkvistZeilberger ,

accompanying [AZ], that has been ‘embedded’ in the present package, MENAGES in order to make it
self-contained, to get a (rigorously proved!) linear recurrence equation with polynomial coefficients.

If someone is in a rush, one can ‘cheat’ and get a semi-rigorously-proved recurrence, by plain
guessing, where one can either use the built-in Maple package gfun, or my own implementation

http://www.math.rutgers.edu/~zeilberg/tokhniot/Findrec ,

that is also embedded in MENAGES. Once you have the a linear recurrence, one uses my Maple

C – 8



NSF Proposal: Automated Enumerative Combinatorics

package AsyRec available from

http://www.math.rutgers.edu/~zeilberg/tokhniot/AsyRec ,

to compute an asymptotic expansion to any desired order (the leading asymptotics can be shown
to be n!/ek where k is the ‘width’ of the strip) .

I.4: Conclusion of Section I

The above are but three specific case studies. In addition to pursuing them for their own sake, it is
hoped that a general enough theory of enumeration schemes would be developed for which one may
be able to prove, in a yet-to-be-found sense, intractability. Judging from the wide open holy grail of
computer science, the P vs. NP problem (and its close cousin the notion of #P-completeness), this
task is, most probably, (meta)-intractable, so one should settle on finding some reduction proce-
dures that would establish that many seemingly intractable enumeration problems are ‘equivalent’
(modulo polynomial-time reduction), thereby developing an enumerative-combinatorics-analog of
the notion of #P-completeness.

II. A Symbolic-Computational Approach to Limit Laws of Combinatorial Statistics

II.1 Probability Limit Laws

One of the central themes of modern probability theory are limit laws, the most celebrated one
being the Central Limit Theorem, that roughly says that if you repeat the same experiment many
times, and the “atomic” experiment can have an arbitrary probability distribution (with finite
variance), then in the limit, after one “centralizes” and “normalizes” (divides by the so-called
standard deviation) one gets the (continuous) Standard Normal Distribution:

Pr(a ≤ X ≤ b) =
1√
2π

∫ b

a

e−x
2/2 dx .

The iconic example of a discrete probability distribution is the random variable “number of Heads”
upon tossing a (loaded) coin n times, whose probability distribution is given by the Binomial
Distribution, usually denoted by B(n, p). It describes the experiment of tossing a coin n times
with the probability of Heads being p. The “sample space” is the set of all 2n outcomes {H,T}n,
and the probability of an “atomic” event is pNumberOfHeads(1 − p)NumberOfTails, and hence the
probability of the “compound event”, NumberOfHeads=k, is

(
n
k

)
pk(1−p)n−k. If we call this random

variable Xn, then its mean is np and its variance is σ2 := np(1 − p). Introducing the centralized
and normalized random variable

Zn :=
Xn − np√
np(1− p) ,

the “original” (De Moivre-Laplace) Central Limit Theorem asserts that

Zn → N ,

where N is the Standard Normal Distribution.

A symbolic-computational approach, based on the method of moments, to combinatorial statistics,
taken one at a time has been initiated in [Z9], and implemented in the Maple packages

http://www.math.rutgers.edu/~zeilberg/tokhniot/CLT and

http://www.math.rutgers.edu/~zeilberg/tokhniot/AsymptoticMoments .

But often in combinatorics we have several interesting combinatorial statistics, for example, in the
symmetric group, the number of inversions (inv) and the major index (maj), and it is of interest
to prove joint-limit laws, and getting the multi-variate limiting distribution.
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II.2 Multi-Variate Combinatorial Statistics

A first step towards this goal was done in collaboration with my former student, Andrew Baxter, in
[BZ], where we proved that the above-mentioned combinatorial statistics, namely inv and maj, are
asymptotically joint-independently-normal. Quite recently, a student of Christian Krattenthaler,
Marko Thiel, beautifully generalized our approach to words (alias multiset permutations), see his
paper [T]. But this is still but the tip of the iceberg. What about considering three (or more) com-
binatorial statistics simultaneously? A fascinating playground would be to consider the statistics of
‘number of occurrences of permutation patterns’, using, as a starting point, my recent paper with
Brian Nakamura ([NZ]) (already mentioned above in a different context).

III. Wilf-Zeilberger Algorithmic Proof Theory

WZ-theory has been implemented in all the major computer-algebra systems. In Maple it is even
part of the software itself, where one can find the following commands

SumTools[Hypergeometric][Zeilberger] and DEtools[Zeilberger],

(that also use enhancements and generalizations due to Sergey Abramov and Wolfram Koepf).

These algorithms (and general theory!) are widely used in combinatorics, of course, but also
in topology (knot theory) (e.g. [G],[GL]), Nuclear Physics(e.g. [ABKS]), Calabi-Yao differential
equations (that are important in String theory) (e.g. [Al]), Number Theory (e.g. [Su], [GR]), the
discovery (and proof!) of infinite series that converge very fast to famous constants like 1

π2 (e.g.
[Gu]), and most recently in (mainstream) multivariate statistics (e.g. [HNTT]) (not to be confused
with multivariate combinatorial statistics mentioned above). I hope to continue to enlarge the
scope of WZ theory, make it more efficient, and find novel applications.

Conclusion: The Medium is (a large part of) the Message 1.

The intellectual merit of the present proposal should be assessed on (at least) three levels. On
the ‘lowest’ level this research contributes to combinatorics, an important field of mathematics with
many applications to almost every branch of science, technology and human endeavor (the World
Wide Web and telephone communication, CD players and pictures from Mars would be impossible
without it, to mention just a few things that come to mind). The fact that I am using computers
extensively in order to do my research in combinatorics should not be held for or against it, it is
just another (legitimate) tool.

On the ‘middle level’, by using symbolic computation on a day-to-day basis, and trying to develop
new algorithms (like in WZ theory), this research contributes, both directly and indirectly, to
computer algebra, which is emerging as an indispensable tool not only in mathematics, but in all
of science and technology.

Finally, on the ‘highest-level’, this research contributes to a new outlook and awareness in mathe-
matical research. Mathematical research, until now, was paper and pencil and a priori, and people
like Appel and Haken and Thomas Hales have to be apologetic and defensive about using comput-
ers. The computer is a mighty tool, go forth and use it! But we humans must think of creative
ways of utilizing its immense potential, over-and-above its obvious use as a ‘numerical and symbolic
calculator’ and ‘brute force number- (and symbol-) cruncher’. We urgently need to develop new
methodologies to enable us to make full use of computers. The potential applications are unforesee-
able, but I am sure that future computer mathematics will make all past and present mathematics
look like Mickey-Mouse stuff. But these new advances will not come by themselves. The role of the
human mathematician would have to change from that of ‘athlete’ to that of ‘coach’, and this would
also necessitate a change in mentality. I hope that my preaching (in my papers and the opinion
column of my website), courses and seminars on Experimental Mathematics, and especially research
(both the research papers viewed as case studies, and the more philosophical and methodological

1 This is the same conclusion as in my previous proposal. It is even truer today.
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papers), will form a modest, yet strictly positive, beginning. If we build it (a new experimental
methodology for mathematics), they will come (present and future mathematicians will practice
it.)

Similarly, the broader impact should also be judged on more than one level. Combinatorics
per se, and Computer Algebra, are both essential to science, technology, and even entertainment.
But, more generally, mathematics, as a whole, is one of the greatest pillars of our civilization and
culture, both spiritually and materially. Helping change the way we practice mathematics (for the
better, I am sure), would have the broadest impact on mathematics itself. And what’s good for
mathematics is good for humanity.
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