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Summary of Results from Previous NSF Support: DMS 0401124

1. The current NSF award number is DMS-0401124 for the period 2004-2009 (five summers),
totaling $239,023 (including the supplements for graduate student support).

2. Its title is: “Automating Combinatorics”.

3. Summary of the results of the completed work

(The numbered references apply to the list of papers written with the NSF support of the above
grant, given at section 4. The lettered references are to papers listed in “References Cited”.)

It is often the case, in scientific research (and elsewhere), that the whole is larger than the sum of
its parts. I believe that in the case of my own research, and of my students, the whole is much
larger than the sum of its parts, not that the parts have anything to be ashamed of.

The Whole

My research students and I continued to practice a new research methodology, that can be loosely
called rigorous experimental mathematics. It has something in common with both “mainstream”
experimental mathematics, as preached by the Borwein brothers, David Bailey, Victor Moll, and
their collaborators, (see e.g. the masterpiece [BB], and the recent collection [BBCGLM]), and
automated theorem proving (as practiced in computational logic), but is definitely distinct from
them. It is based on what I call the ansatz ansatz ([12][13], see [22] for a philosophical discussion).
In this methodology, one “teaches” the computer how to “conjecture an answer” to a problem, and
then “teaches” that very same computer to prove its own conjectures rigorously. The novelty is
that both the conjecturing and the proving are automatically done by the computer. This does not
mean that human mathematicians are superfluous. Quite the contrary! Someone has to “teach”
the computer, i.e. design algorithms and meta-algorithms for both proving and conjecturing. In my
experience, this act of “teaching” the computer how to do mathematics is at least as challenging as
doing mathematics “by hand”, and in my humble opinion, time much better spent, since the vast
potential of the computer is still very underutilized and underrated, and it is important to have
mathematicians, like myself and my students, who are dedicated to that activity, that I believe will
soon revolutionize mathematics.

The Parts

In the last five years, in collaboration with my students and other researchers, 32 research articles
were written, on various topics. Most of these papers are accompanied by long and sophisticated
Maple packages, that are downloadable from my website, free of charge.
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I will now very briefly list the specific accomplishments.

Wilf-Zeilberger Algorithmic Proof Theory ([2][5][9][10][17]): The so-called WZ theory was
further extended and applied, in collaboration with my student Moa Apagodu, who graduated in
2006.

Combinatorial Games([1][25]): The Theory of Combinatorial Games is a great arena for rigorous
experimental mathematics. In [1], Xinyu Sun and I prove parts of a difficult conjecture of Aviezri
Fraenkel about an extension of Wythoff’s game. This game is an impartial games. In collaboration
with my recently-graduated Ph.D. student, Thotsaporn “Aek” Thanatipanonda, we ([25]) applied
the methodology of rigorous experimental mathematics to partizan games, whose general theory
was developed in the classic book Winning Ways[BCG], by Berlekemp, Conway, and Guy. In
particular, using a Symbolic Finite-State method, we proved several fifteen-year-old conjecture of
Jeff Erickson[Eri].

Enumerative Combinatorics ([3][4][7][11][12][13][15][16][18][19] [20][23][27][28][30][31]): The the-
ory of the Holonomic Ansatz[12][13], that will be described in the Project Description, has already
scored two exciting triumphs. In collaboration with Manuel Kauers and Christoph Koutschan,
we ([30]) proved a very challenging conjecture of Ira Gessel, that states that the number of 2n-
step walks in the square lattice from the origin back to the origin, with unit steps in the four
directions (Up, Down, Left, and Right), staying in the region {(x, y) | y ≥ 0, x + y ≥ 0}, equals
16n(5/6)n(1/2)n/((5/3)n(2)n) (where (a)n := a(a + 1) · · · (a + n − 1) is the rising-factorial). This
is discussed further later. Perhaps an even more dramatic application of the holonomic ansatz
(this time its application to determinant-evaluation described in [13]) was my recent paper([31]),
also with Kauers and Koutschan, that proved (well, “almost proved”) a famous conjecture of
Dave Robbins and George Andrews, that dates from the early eighties, and was popularized by
Richard Stanley([Sta2][Sta3]), and also mentioned in Dave Bressoud’s celebrated monograph [Bre].
It concerns the q-enumeration of so-called totally symmetric plane partitions. The straight-counting
(q = 1) case was accomplished by John Stembridge[Ste] in 1995, but the general case remained wide
open. Previously, Soichi Okada ([Oka]) reduced the problem to evaluating an “innocent-looking”
determinant. In [31], Kauers, Koutschan, and I, using the methodology developed in my general
article [13], reduced the statement to a completely decidable q-holonomic identity, that with suffi-
cient computing power, and existing (WZ-style) algorithms due to Fréderic Chyzak[Ch], should be
verifiable.

Exposition([6][22]): My essay on Enumerative and Algebraic Combinatorics[6] was well-received.
Part exposition, part philosophy, and part methodology, is my essay [22].

4. List of Publications resulting from the previous NSF award 2004-2008

1. Xinyu Sun and Doron Zeilberger, On Fraenkel’s N-Heap Wythoff Conjecture, Annals of Combi-
natorics 8 (2004). 225-238.

2. Mohamud Mohammed (now Moa Apagodu) and Doron Zeilberger, The Markov-WZ method,
Elec J. Combinatorics 11(2004), R53. (14 pages).

3. Doron Zeilberger, Symbolic Moment Calculus I.: Foundations and Permutation Pattern Statis-
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tics, Annals of Combinatorics 8 (2004), 369-378.

4. Doron Zeilberger, Dave Robbins’s Art of Guessing, Adv. Appl. Math. 34 (2005), 939-954.

5. Mohamud Mohammed (now Moa Apagodu) and Doron Zeilberger, Sharp Upper Bounds for
the Orders of the Recurrences Outputted by the Zeilberger and q-Zeilberger Algorithms, J. Symbolic
Computation 39 (2005), 201-207.

6. Doron Zeilberger, Enumerative and Algebraic Combinatorics, in: “Princeton Companion of
Mathematics”,T. Gowers, ed., 550-561, Princeton University Press, 2008.

7. Arthur Benjamin and Doron Zeilberger, Pythagorean Primes and Palindromic Continued Frac-
tions, INTEGERS 5(1) (2005), A30.

8. Andrew V. Sills and Doron Zeilberger, Disturbing the Dyson Conjecture (in a GOOD Way), J.
Experimental Mathematics 15 (2006), 187-191

9. Doron Zeilberger, DECONSTRUCTING the ZEILBERGER algorithm, J. Difference Equations
and its Applications 11 (2005), 851-856.

10. Doron Zeilberger, and Moa Apagodu (formerly Mohamud Mohammed) Multi-Variable Zeil-
berger and Almkvist-Zeilberger Algorithms and the Sharpening of Wilf-Zeilberger Theory , Adv.
Appl. Math. 37 (2006)(Special Regev issue), 139-152

11. Doron Zeilberger, Automatic CountTilings, Personal Journal of Ekhad and Zeilberger,
http://www.math.rutgers.edu/~zeilberg/pj.html, 2006.

12. Doron Zeilberger, The HOLONOMIC ANSATZ I. Foundations and Applications to Lattice
Path Counting, Annals of Combinatorics 11(2007), 227-239

13. Doron Zeilberger, The HOLONOMIC ANSATZ II. Automatic DISCOVERY(!) and PROOF(!!)
of Holonomic Determinant Evaluations, Annals of Combinatorics 11(2007), 241-247

14. Doron Zeilberger, Symbolic Moment Calculus II.: Why is Ramsey Theory Sooooo Eeeenor-
moulsy Hard?, “Combinatorial Number Theory”, B. Landman et. al, editors, in Celebration of the
70th Birthday of Ronald Graham, de Gruyter, 2007. (Co-published in INTEGERS, 7(2)(2007),
A34.]

15. Shalosh B. Ekhad, Vince Vatter, and Doron Zeilberger, A Proof of the Loehr-Warrington
Amazing TEN to the Power n Conjecture, Personal Journal of Ekhad and Zeilberger,
http://www.math.rutgers.edu/~zeilberg/pj.html, 2006.

16. Doron Zeilberger, Symbol Crunching with the Gambler’s Ruin Problem, in: “Tapas in Experi-
mental Mathematics”, Tewodros Amdeberhan and Victor Moll, editors, Contemporary Mathemat-
ics 457 (2008), 285-292.

17. Moa Apagodu and Doron Zeilberger, FIVE Applications of Wilf-Zeilberger Theory to Enu-
meration and Combinatorics, in: “COMPUTER ALGEBRA 2006, Latest Advances in Symbolic
Algorithms” [Abramov Festschrift, dedicated to Sergey Abramov’s 60th birthday], Ilias S Kotsireas
and Eugene V Zima, eds., World Scientific, Aug. 2007.
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18. Arvind Ayyer and Doron Zeilberger, The Number of [Old-Time] Basketball games with Final
Score n:n where the Home Team was never losing but also never ahead by more than w Points,
Electronic J. of Combinatorics 14(1) (2007), R19 (8pp).

19. Philip Matchett Wood and Doron Zeilberger, A Translation Method for Finding Combinatorial
Bijections, Annals of Combinatorics, to appear.

20. Arvind Ayyer and Doron Zeilberger, Two Dimensional Directed Lattice Walks with Bound-
aries, in: “Tapas in Experimental Mathematics”, Tewodros Amdeberhan and Victor Moll., eds.,
Contemporary Mathematics 457 (2008), 1-20.

21. Tewodros Amdeberhan and Doron Zeilberger, “Trivializing” Generalizations of Some Izergin-
Korepin-Type Determinants, Discrete Mathematics and Theoretical Computer Science 9 (2007),
203-206.

22. Doron Zeilberger, An Enquiry Concerning Human (and Computer!) [Mathematical] Under-
standing, in: C.S. Calude ,ed., “Randomness & Complexity, from Leibniz to Chaitin”, World
Scientific, Singapore, Oct. 2007.

23. Doron Zeilberger, Using Rota’s Umbral Calculus to Enumerate Stanley’s P-Partitions, Adv.
Applied Mathematics 41(2008), 206-217.

24. Manuel Kauers and Doron Zeilberger, Experiments With a Positivity Preserving Operator,
Experimental Mathematics, to appear.

25. Thotsaporn “Aek” Thanatipanonda and Doron Zeilberger, A Symbolic Finite-State Approach
For Automated Proving of Theorems in Combinatorial Game Theory, J. Difference Eq. Applica-
tions, to appear.

26. Moa Apagodu and Doron Zeilberger, Searching For Strange Hypergeometric Identities By Sheer
Brute Force, INTEGERS 8(2008), A36.

27. Manuel Kauers and Doron Zeilberger, The Quasi-Holonomic Ansatz and Restricted Lattice
Walks, To appear in J. of Difference Equations and Applications [special issue in honor of Gerry
Ladas’ 70th Birthday].

28. William Y.C. Chen, Jing Qin, Christian M. Reidys and Doron Zeilberger, Efficient Counting
and Asymptotics of k-noncrossing Tangled Diagrams, submitted.

29. Yuri Bahturin, Amitai Regev and Doron Zeilberger, Commutation Relations and Vandermonde
Determinants, to appear in European J. Combinatorics.

30. Manuel Kauers, Christoph Koutschan, and Doron Zeilberger, Proof of Ira Gessel’s Lattice Path
Conjecture, submitted.

31. Manuel Kauers, Christoph Koutschan, and Doron Zeilberger, A Proof of George Andrews’ and
Dave Robbins’ q-TSPP Conjecture (modulo a finite amount of routine calculations), submitted.

32. Doron Zeilberger, Proof of a conjecture of Philippe Di Francesco and Paul Zinn-Justin related
to the qKZ equations and to Dave Robbins’ two favorite combinatorial objects, Personal Journal of
Ekhad and Zeilberger, http://www.math.rutgers.edu/~zeilberg/pj.html, 2006.
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5. As already mentioned above, most of my papers are accompanied by Maple packages that
are available, free of charge, from my homepage http://www.math.rutgers.edu/~zeilberg/. In
addition, there are quite a few packages that belong to forthcoming papers, or stand by themselves.
Some of them are of a rather general scope, and should be useful to researchers in combinatorics,
number theory, analysis, statistical physics, and possibly other areas.

6. A large part of the proposed research is a direct continuation of the previous research, but there
are also new directions, in which the connection is less obvious.

7. Education and Human Resources Statement

During the discussed period (2004-2008), six students received their Ph.D. degree under my guid-
ance. Xinyu Sun (2004), who was visiting assistant professor at Texas A&M for three years,
working with Catherine Yan, and who is currently visiting assistant professor at Tulane University,
collaborating with Experimental Mathematics guru Victor Moll; Xiangdong Wen (2005), who
works for Wolfram Research; Vince Vatter (2005), who was a postdoctoral fellow at St. Andrews
University for two years, was then offered a prestigious NSF posdoc at MIT, (to work with Richard
Stanley), but decided, to my great disappointment, to “sell out”, and accepted an offer from the
hedge fund DE Shaw. To my utmost joy, he was so disgusted by the corporate culture that he
resigned nine days later, and returned to academia, and has just started a three year position at
Dartmouth College; Moa Apagodu (2006), who accepted a tenure-track assistant professorship
at Virginia Commonwealth University; Lara Pudwell (2008), who was recruited by her under-
graduate alma mater, Valparaiso University (Indiana), and is now tenure-track assistant professor
there. Lara was supported, in part, by this grant, and did very impressive work on Enumera-
tion Schemes for forbidden patterns in permutations. Lara is also a great educator and received
a university-wide award for excellence in contributions to undergraduate education; Thotsaporn
“Aek” Thanatipanonda(2008), who is now a visiting Assistant Professor at Dickinson College.
Aek received a university-wide excellence in research award this Spring, one of six, competing with
a pool of four thousand students in all subjects; Arvind Ayyer(2008), who was jointly super-
vised by Joel Lebowitz, and whose Ph.D. is in physics. Arvind started (Oct. 2008) a two-year
postdoctoral position at the Institute of Theoretical Physics in Saclay, France.

In Spring 2008 I expect to graduate two more students. Eric Rowland, who works on enumeration
and discrete dynamical systems, and who recently made quite a splash with his “prime-generation”
algorithm, that was written-up in Pour La Science, and Ivars Peterson’s MAA Column The Math-
ematical Tourist, as well as Jeff Shallit’s widely read blog Recursively; Paul Raff, who does very
interesting work on combinatorial problems with applications to epidemiology, and on counting
spanning trees. In addition, I have two more current Ph.D. students: Andrew Baxter, and
Emilie Hogan. Their progress is very satisfactory.
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PROPOSED RESEARCH: RIGOROUS EXPERIMENTAL COMBINATORICS

In his preface to A = B ([PWZ]), Don Knuth famously wrote:

“Science is what we understand well enough to explain to a computer. Art is everything else we
do.”

Then he went on to comment how so-called Wilf-Zeilberger Algorithmic Proof Theory turned an
“important part of mathematics” (hypergeometric summation and integration) from an Art into a
Science.

Important as hypergeometric summation and integration may be, they are still rather small, spe-
cialized, areas. I strongly believe that WZ theory is a harbinger of analogous algorithmic proof
theories in many other branches of mathematics, and a large part of my research agenda consists
in trying to discover and use them. Of course, one should be flexible, and not insist on emulating
WZ theory completely. For example, if one can develop an algorithmic proof theory for a class of
problems that only works sometimes (i.e. that is not guaranteed to always succeed), that would be
nice too.

A close look at WZ theory reveals that it is essentially “systematic and inspired guessing”, so let’s
pause and talk about guessing.

The Art of Guessing

Guessing, or more “respectably”, conjecturing, is a very important part of mathematical research,
that unfortunately was suppressed for many years, until it made a comeback when computers came
along. A very notable exception was George Polya’s marvelous approach ([Po1][Po2]), that I believe
should, and could, be adapted to the computer age (see [22]). All the great mathematicians of the
past “got their hands dirty”, and arrived at their beautiful theorems and conjectures after extensive
experimentation (with paper-and-pencil, of course, and in Archimedes’ case, sand-and-stick). I am
sure that they would have done much more if they had a computer algebra system like Maple or
Mathematica.

In his delightful essay on Experimental Mathematics, Herb Wilf ([Wil]) describes “regular” exper-
imental mathematics, as it is practiced today, as follows.

1. Wondering, by a human, what a “particular situation looks like in detail”.

2. Computer experimentation to show the structure of that situation for a selection of small values
of the parameters.

3. The [human] mathematician gazes at the computer output, attempting to see or to codify some
pattern, that hopefully leads him or her to formulate a conjecture.

4. Human-made proof of the human-made conjecture (that was computer-inspired).

Turning Guessing from an Art into a Science

In my version of experimental mathematics, the first two steps remain the same, but the last two
are replaced by:
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3’. The computer (automatically) tries to discovers a pattern, following an ansatz (see below)
specified by the human mathematician.

4’. The computer discovers a proof, all by itself, by using a “proof-ansatz” specified by the hu-
man, and mathematical induction, that has been programmed into the computer, thereby giving a
completely rigorous proof.

So, in the present approach to mathematical research, one expects much more from the computer
than just being (as George Andrews quiped) a “pencil with power-steering”. Computers do the
actual mathematics, while humans are engaged in “meta-mathematics”, but not in the traditional
sense of logic and set theory, but in “teaching” computers to discover and prove theorems within
existing ansatzes, and, perhaps even more importantly, developing new ansatzes. But let’s first
define the keyword ansatz.

What is an Ansatz?

According to Eric Weisstein’s mathworld.com wonderful website, in an entry contributed by Mark
D. Carrara[Wei],

“An ansatz is an assumed form for a mathematical statement that is not [necessarily] based on any
underlying theory or principle.”

In other words, you make a wild guess that the desired solution has a certain form, featuring some
undetermined coefficients, “plug” that form into the conditions of the problems, and try to solve
for the coefficients. If in luck, you find a solution, and then, since the proof of the pudding is in the
eating, you have an a posteriori justification for choosing that ansatz, and more importantly for
your short-term goals, you have solved the problem! In addition, your present success will give
you more confidence that this ansatz might possibly work for similar problems in the future.

My General Research Agenda: Exploit Known ansatzes to tackle challenging problems in
mathematics, and develop new ones.

Part I: Exploiting Known Ansatzes

Even within the already known ansatzes, there is still a lot of work to be done. Some of the better
known ones (see [22] for more detail) are the polynomial ansatz, the C-finite ansatz (sequences whose
generating function is a rational function), the (what I call) Schützenberger ansatz (sequences whose
generating function is an algebraic formal power series), and the holonomic ansatz (the framework
for WZ theory). I propose to utilize each of these for various problems, that I will now describe.

The Polynomial Ansatz

A very striking example can be found in [Z1]. Since it is so brief, let me quote it in its entirety.

For a permutation π, let inv π be the number of (i, j), such that 1 ≤ i < j ≤ n and π[i] > π[j],
and maj π be the sum of i, such that 1 ≤ i < n and π[i] > π[i + 1]. Svante Janson asked Don
Knuth, who asked me, about the covariance of inv and maj. The answer is

(
n
2

)
/4. To prove it, I

asked Shalosh to compute the average of the quantity (inv π − E[inv])(maj π − E[maj]) over all
permutations of a given length n, and it gave me, for n = 1, 2, 3, 4, 5, the values 0, 1/4, 3/4, 3/2, 5/2,
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respectively. Since we know a priori1 that this is a polynomial of degree ≤ 4, this must be it!

But “brute brute force” can only go so far. If instead of trying to find the covariance, that is the
average of (inv π−E[inv])(maj π−E[maj]), one wanted to use the above naive approach to find,
the “higher-covariances”

Cr,s(n) :=
1
n!

∑
π∈Sn

(inv π − E[inv])r(maj π − E[maj])s ,

a polynomial of degree ≤ 3(r + s)/2 in n, say for r = 10, and s = 10, one would need 31 data
points, and the computer would have to perform well over 31! (roughly 0.822 · 1034) additions. Not
very realistic!

But why so brutish? Here is an alternative way to generate the needed 31 terms of the sequence
that would enable you to compute them much more efficiently, before you fit them into a polynomial
of degree 30.

Define the bi-variate generating function

An(q1, q2) =
∑
π∈Sn

qinvπ1 qmajπ2 .

Unlike An(q, 1) and An(1, q), that are both given by the closed-form expression
[n]! = (1−q)(1−q2) · · · (1−qn)/(1−q)n (the so-called q-analog of n factorial), both classical results
that go back to Netto and MacMahon respectively, there is no known “closed-form” for An(q1, q2).
Nevertheless, one can form a recurrence scheme, that would enable one to easily compute these
polynomials for, say, n ≤ 60. It goes as follows.

Let Fn,i(q1, q2) be the weight-enumerator according to the weight qinvπ1 qmajπ2 , of the set of per-
mutations that end in i. Once we know Fn,i, we can compute An, since An =

∑n
i=1 Fn,i. A fast

way to compute Fn,i(q1, q2) is in terms of the recurrence (whose proof is omitted here, but is fairly
straightforward)

Fn,i(q1, q2) = q1Fn,i+1(q1, q2) + qn−i1 (qn−1
2 − 1)Fn−1,i(q1, q2) ,

subject to the boundary conditions Fn,n(q1, q2) = An−1(q1, q2), and the initial condition F1,1(q1, q2) =
1. To get Cr,s(n) (the higher covariances), we simply use

Cr,s(n) =
1
n!

(q1
∂

∂q1
)r(q2

∂

∂q2
)s
(

An(q1, q2)

q
n(n−1)/4
1 q

n(n−1)/4
2

)∣∣∣
q1=1,q2=1

,

and now we can easily ask the computer to crank out many terms of An(q1, q2), that would immedi-
ately allow us to compute the first 31 terms (say) of the sequence {C10,10(n)}, that, in turn, would

1 This is the old trick to compute moments of combinatorial ‘statistics’, described nicely in Graham, Knuth, and

Patashnik’s ‘Concrete Math’, section 8.2, by changing the order of summation. It applies equally well to covariance.

Rather than actually carrying out the gory details, we observe that this is always a polynomial whose degree is trivial

to bound.
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enable us, by fitting these data into a degree-30 polynomial in n, to find an explicit polynomial
expression. (In general, for Cr,s(n) we would need 3(r + s)/2 + 1 terms, of course).

But what about C100,200(n)? Then even this improved approach will run out of memory. But there
is yet another, more efficient way to crank out Cr,s(n) directly. Using the above recurrence for Fn,i
it is possible to get recurrences directly for Ar,s(n), for much lager r and s. But who cares? Do we
really want to see the fully expanded degree-450 polynomial expression for C100,200(n)? Fortunately,
this approach can do much more. It can give us just the leading term in the asymptotics, from which
the human can easily guess the asymptotic expression (that the computer (or human) can then
prove by induction). From this data it is not too hard to conjecture (and then prove) the following
asymptotics for the normalized generalized covariances (or “higher-correlation coefficients”):

N2r,2s(n) :=
C2r,2s(n)

C2,0(n)rC0,2(n)s
=

(2r)!
r!2r

(2s)!
s!2s

+O(1/n) ,

and N2r+1,2s(n), N2r,2s+1(n), N2r+1,2s+1(n) are all O(1/n). Now this is of great human interest!
It implies, via the so-called method of moments, that the random variables maj and inv, once (as
usual in limit laws in probability) centralized and divided by their standard deviations, are joint
asymptotically normal, i.e., as n→∞, closely resemble two independent standard Gaussians.

By hindsight, this theorem could have been proved by entirely human means, but it was inspired by
computer, and furthermore, with a computer, we can get many more terms in the asymptotic expan-
sion. There are numerous other natural permutation statistics, and I believe that analogous “limit
theorems” can be proved for them, and it may be also possible to consider the joint-distribution of
more than two at a time. This brings us to:

Research Problem 1: Use the Polynomial ansatz as the framework for Rigorous Experimental
studies of a Statistical (symbolic) theory of Permutation Statistics.

We will meet permutation statistics again, when I will talk about them in the context of a yet-to-
be-developed multi-basic ansatz.

The C-finite ansatz

A sequence {a(n)}∞n=0 is C-finite if it satisfies a homogeneous linear recurrence equation with
constant coefficients. Equivalently, if its (ordinary) generating function is a rational function of x,
i.e. there exist polynomials P (x) and Q(x) such that

∞∑
n=0

a(n)xn =
P (x)
Q(x)

.

The simplest (non-constant) C-finite sequence is {2n} (whose generating function is 1/(1 − 2x))
and the simplest one of order higher than one, is the sequence of Fibonacci numbers {Fn} (whose
generating function is x/(1 − x − x2)). The polynomial ansatz is a subansatz of the present one,
since the generating function of a polynomial sequence of degree d is a rational function with
denominator (1− x)d+1.

As simple as this ansatz is, it too can be used in rigorous experimental mathematics. An amusing
example is given in [11], where my computer, Shalosh B. Ekhad rigorously proved the Kasteleyan-
Fisher&Temperly ([K][FT]) celebrated formula for the number of ways of tiling an m by n rectangle
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with “dimers” (2×1 and 1×2 tiles, i.e. “dominoes) for fixed m (in practice m ≤ 20) but general(!)
n. This experimental approach could, presumably, with some human help, lead to a new proof of
the general theorem.

But in a way, Kasteleyan and Fisher&Temperly were lucky. It so happened that this problem had
such a structure that human techniques worked. In general such problems, that arise in statistical
physics, are notoriously difficult, and physicists resort to non-rigorous and approximate heuristic
methods in order to say interesting things. For example, the analogous problem of tilings a rectangle
with both dimers and monomers (1 × 1 tiles) is wide open, as are the Ising model with magnetic
field in two dimensions, and the three-dimensional Ising model. A complete solution is, of course,
a “long shot”, but I believe that using the C-finite ansatz to study finite approximations, may
pave the way to, who knows?, a new ansatz that will take care of these open problems, or at least
indicate their intractability. To summarize, we have:

Research Problem 2: Use the C-finite ansatz to study “finite-forms” of seemingly intractable
problems in combinatorial models that arise in statistical physics.

Another grist-for-the-mill for the “humble” C-finite ansatz is Ramsey Theory and Szemerédi’s
theorem ([Sze]). Recall that Szémeredi’s theorem asserts that for any given integer k, and any
density δ, there exists an integer N0(k, δ) such that for n ≥ N0 any subset of [1, n] with at least δn
elements is guaranteed to have an arithmetical progression of length k. Szemerédi only proved that
N0(k, δ) <∞, and the implied bounds were astronomical. Gowers[Go] brought them down, and for
the k = 3 case (Roth’s theorem), Bourgain([Bou1][Bou2]) brought them even further down. But
neither is believed to be sharp, and there is probably lots of room for improvement. Surprisingly,
this problem can be “approximated” by sequences that belong to the C-finite ansatz, by looking at
those arithmetical sequences with bounded difference, using an extension of the Goulden-Jackson
([GJ]) method due to Noonan and myself ([NZ]). This brings us to:

Research Problem 3: Use the C-finite ansatz to study “finite-forms” of difficult problems in
Ramsey Theory and Additive Number Theory. Try to get insight both from the output, and from
the method.

The Schützenberger Ansatz

A sequence a(n) belongs to that ansatz whenever its generating function f(x) is a solution of
an algebraic equation whose coefficients are polynomials in x, i.e. there exists a polynomial in
two variables P (x, y) such that P (x, f(x)) ≡ 0. For the special case where P (x, y) is of degree
one in y we are back to the C-finite case. The paradigmatic example of such a sequence is the
sequence of Catalan numbers, whose generating function, φ(x), satisfies φ(x) = 1 + xφ(x)2. See
my Maple package SCHUTZENBERGER available from my website, and the very useful Maple
package gfun developed by Bruno Salvy and Paul Zimmerman [SZ]. Such sequences arise naturally
in tree-enumeration, and lattice path-counting. The ecóle bordelaise, under the leadership of Xavier
Viennot and Mireille Bousquet-Mélou (see e.g. [BM]) developed a marvelous theory. While they
do use computer algebra systems quite extensively, they do so mainly as a symbolic calculator, in
the traditional mode. I believe that there is lots of work to be done in upgrading to my style of
experimental mathematics.
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One way that such formal power series arise is related to the problems in statistical physics that
I have already mentioned. When a physicist is interested in a quantity, let’s call it Am,n(z), it
depends on a parameter z (e.g. the temperature). It often happens that for fixed m, the sequence
Am,n(z) is C-finite in n (with increasingly complicated generating functions as m gets larger), but
the physicists are really only interested in the thermodynamic limit

f(z) := lim
m→∞

lim
n→∞

Am,n(z)1/mn ,

and its analytical behavior as a function of z (a singularity corresponds to a phase transition, and
its mathematical nature corresponds to the physical nature of the phase transition). It is easy to
see that whenever {Am,n(z)}∞n=0 is C-finite,

fm(z) := lim
n→∞

Am,n(z)1/n ,

belongs to the present ansatz, and if we’ll understand fm(z) well enough, it may lead us to f(z) =
limm→∞ fm(z)1/m, by moving up to a higher ansatz (in the case of the 2D Ising model, it happens
to be the holonomic ansatz, to be discussed shortly). So progress on the Schützenberger ansatz
may have applications in mathematical physics. In short, we have:

Research Problem 4: Extend the beautiful, but human, work of the Bordeaux school (and other
researchers), to make more active use of computer-generated (rigorous) mathematics.

My favorite Ansatz: The Holonomic Ansatz

A sequence a(n) (of a single discrete variable n) is called holonomic if it satisfies a (homogeneous)
linear recurrence equation with polynomial coefficients, i.e. there exists a positive integer L (the
order), and L+ 1 polynomials p0(n), p1(n), . . . , pL(n) such that

L∑
i=0

pi(n)a(n+ i) = 0 .

This concept was implicit for a long time, but was first explicated in Richard Stanley’s seminal
paper [Sta1]. Stanley called such sequences P-recursive.

In [Z2], I show that almost everything in sight in enumerative combinatorics, and a lot elsewhere, is
holonomic. I also gave a “slow” algorithm that was later made much faster by Frederic Chyzak[Ch]
and others, and in later developments I found much faster algorithms for important special cases.
But there is an alternative, more “empirical” approach, that I described in [12] and [13], that
applies it to lattice path counting, and automatic determinant-evaluation. respectively. Note that
WZ-theory is not always applicable to these problems, so the scope of the present approach is
different.

To illustrate the ideas, let me sketch the main strategy in my recent proof, with Manuel Kauers
and Christoph Koutschan ([30]) of Ira Gessel’s notorious lattice path conjecture, already mentioned
above, that states that the number of 2n-step walks in the square lattice from the origin back to
the origin, with unit steps in the four directions (Up, Down, Left, and Right), staying in the region
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{(x, y)|y ≥ 0 , x+y ≥ 0}, equals 16n(5/6)n(1/2)n/((5/3)n(2)n) (where (a)n := a(a+1) · · · (a+n−1)
is the rising-factorial).

Consider the more general discrete function A(x, y;n), the number of ways of getting from the
origin to a general point (x, y) in n steps. A(x, y;n) obviously satisfies:

A(x, y;n) = A(x−1, y;n−1)+A(x, y−1;n−1)+A(x+1, y;n−1)+A(x, y+1;n−1) (Recurrence)

in {(x, y)|x + y ≥ 0, y ≥ 0}, subject to the initial condition A(x, y; 0) = 0 if (x, y) 6= (0, 0), and
A(0, 0; 0) = 1, and the boundary conditions A(x, y;n) = 0 if x+y < 0 or y < 0. A natural approach
would be to try and conjecture an “explicit” expression for this general A(x, y;n), prove it by
induction on n using (Recurrence), and then plug-in (x, y) = (0, 0) to get Gessel’s conjectured
explicit expression for A(0, 0; 2n) (obviously A(0, 0; 2n+ 1) = 0).

Alas, this approach, when taken literally, seems doomed to failure. As far as anyone knows,
A(x, y;n) can’t be written in closed-form. But the holonomic ansatz provides an alternative, and
one can just broaden the definition of “closed-form” to that of “satisfying an appropriate partial
recurrence”. Our computers fond a partial recurrence equation of the form

L∑
i=0

pi(n)A(x, y;n+ i) + x
∑

0≤i,j,r≤M

q′i,j,r(x, y, n)A(x+ i, y + j;n+ r)

+ y
∑

0≤i,j,r≤M

q′′i,j,r(x, y, n)A(x+ i, y + j;n+ r) = 0 ,

for L = 32, and some M , and (huge!) polynomials pi(n) and q′i,j,r(x, y, n),q′′i,j,r(x, y, n). This
huge equation was first conjectured (by undetermined coefficients), and then proved rigorously
(automatically) by using induction and the algebra of linear partial recurrence operators with
polynomial coefficients. Now, one plugs-in x = 0, y = 0 to get

L∑
i=0

pi(n)A(0, 0;n+ i) = 0 ,

for some explicit polynomial coefficients pi(n) and (as it happened) L = 32. The rest is routine.
Just verify that Gessel’s nice conjectured expression also satisfies this same recurrence, and check
the first 32 initial values.2

I call this kind of result contingent beauty. There is no moral reason why Gessel’s expression
should be so nice, it is true just because.

The Gessel lattice walk is just one example. This brings us to

Research Problem 5: Use the holonomic ansatz to investigate more general lattice path counting
problems. What about higher dimensions? Perhaps there is a yet-to-be-discovered ansatz.

2 This description is an over-simplification. In practice we never exhibit the q′i,j,r and q′′i,j,r only prove that they

exist. Since at the end of the day they will disappear, upon substituting x = 0, y = 0, they are not needed, only

the fact that they exist.
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Part II: In Search of New Exciting Ansatzes

A Computer-Generated Theory of Permutation Statistics Based on a Multi-Basic Gen-
eralization of the Holonomic Ansatz

In Part I we have already encountered two permutation statistics, inv, the number of inversions, and
maj, the major index. The subject of permutation statistics pioneered by Major Percy MacMahon
([Mac]) and revived by Dominique Foata and his students, is now a very active part of algebraic
combinatorics. Only last year John Shareshian and Michele Wachs [SW] came up with an intriguing
new theorem that was missed by earlier researchers. I believe that my computer-aided approach
will complement nicely the purely human research done so far.

While the generating function according to both inv and maj has a nice closed form ([n]! =
(1)(1 + q) · · · (1 + q+ . . .+ qn−1)), this is not true of the joint-weight-enumerator, for inv and maj,
already introduced in Part I

An(q1, q2) =
∑
π∈Sn

qinvπ1 qmajπ2 .

However, as proved in my early paper [Z5], it satisfies a certain “infinite-order recurrence”. This is
a whole new ansatz waiting to be explored. I believe that it would prove particularly useful in a new
phase in the development of the theory of permutation statistics (there are quite a few in addition
to inv and maj), significantly enhancing the pioneering work of (just to name a few) humans Eric
Babson (e.g. [BS]), Jacques Désarminien (e.g. [DW]), Sergei Elizalde (e.g. [El]), Dominique Foata
(e.g. [Fo]), Adriano Garsia (e.g. [GG]), Ira Gessel (e.g. [GG]), Jeff Remmel (e.g. [Re]), Einar
Steingrimsson (e.g. [BS]) and Michelle Wachs (e.g. [DW],[SW]). To sum up:

Research Problem 6: Develop a theory of multi-basic-holonomic sequences, and apply it to
initiate a new, computer-generated phase, in the classical theory of permutation statistics.

WZ-Theory with (arbitrarily!) many variables

WZ-theory ([WZ]) can handle multi-sums and multi-integrals with a fixed number of summation
and/or integration signs. Consider for example, the celebrated Selberg integral [Se], that states that∫ 1

0

. . .

∫ 1

0

n∏
i=1

txi (1− ti)y
∏

1≤i<j≤n

(ti − tj)2zdt1 . . . dtn

=
n∏
j=1

(x+ (j − 1)z)!(y + (j − 1)z)!(jz)!
(x+ y + (n+ j − 2)z + 1)!z!

. (Selberg)

This beautiful result received quite a few additional proofs, perhaps the most elegant one being
by Aomoto([Ao]). A computer-inspired, but human-generated, WZ-style proof, was give in [WZ],
but there is still no purely computer-generated proof. It would be interesting to extend the scope
of WZ theory to integrals like Selberg’s with n variable, where n is symbolic! This is analogous to
the ascent from high-school algebra to the algebra of symmetric functions with indefinitely many
variables x1, . . . , xn, or equivalently, infinitely many variables.

So far, the Selberg integral and its relatives (the Dyson, Morris, and Macdoland’s constant term
identities), are all with answers that are closed-form. It would be interesting, for example, to
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investigate an integral like

A(z, n) =
∫ 1

0

. . .

∫ 1

0

∏
1≤i<j≤n

(ti + tj)2zdt1 . . . dtn

for general n. WZ theory would give you a recurrence, with respect to z for each specific n (in
practice I doubt whether one can go above n = 4), but what can you say about its dependence on
n? Perhaps there is yet-another-ansatz to be discovered. This brings us to:

Research Problem 7: Extend WZ theory to multi-sum and integrals with indefinitely many
variables. Try to find natural, Selberg-style, integrals that do not evaluate in closed-form, yet can
be given a uniform description in a yet-to-be-discovered new ansatz.

In addition to the above computer-heavy research, I would also like to work on more traditional
combinatorics, as follows.

Part III: Alternating Sign Matrices and Fully Packed Loops

Often proving a long-standing conjecture “kills” the subject. This is certainly not the case with
the Mills-Robbins-Rumsey Alternating Sign Matrix Conjecture. The first proof [Z3], by myself, was
announced in 1993, completed in 1995, and published in 1996. Shortly after, Greg Kuperberg [Ku1]
came up with an ingenious, much shorter proof, using deep results in statistical physics by Izergin
and Korepin that used the ubiquitous Yang-Baxter equation. Shortly after Kuperberg’s proof, I
([Z4]) extended Kuperberg’s approach to prove the much stronger refined version. The whole saga,
with lots of background material, is masterfully narrated in Dave Bressoud’s ([Bre]) prize-winning
monograph.

Any worries that these proofs “finished” the subject will disappear if one searches MathSciNet,
google scholar, or simply arxiv.org. The subject is booming! There is a lot of work in enumer-
ating symmetry classes (by Kuperberg [Ku2] and others), alternative proofs (e.g. a gorgeous one
by Ilse Fischer [Fis]), and connections to other intriguing combinatorial objects, for example fully
packed loops.

There are quite a few outstanding conjectures, but perhaps the most intriguing is one due to
Razumov and Stroganov (RS]), stating an amazing explicit identity about these fully packed loops.
My student Arvind Ayyer and I are working on a bijective approach, that seems promising, but
needs further work. Since my space is up, I will not describe it, but refer the reviewers to [AZ],
that at the time of writing (Sept. 2008) of this proposal is still in preparation, but by the time the
reviewers will read this proposal, will be available both at my website and at arxiv.org. To sum
up:

Research Problem 8: Use bijective methods to prove the Razumov-Stroganov conjecture about
so-called Fully Packed Loops.

Conclusion: The Medium is (a large part of) the Message 3.

The intellectual merit of the present proposal should be assessed on (at least) three levels. On
the ‘lowest’ level this research contributes to combinatorics, an important field of mathematics with

3 This is the same conclusion as in my previous proposal, from 2003. It is even truer today.
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many applications to almost every branch of science, technology and human endeavor (the World
Wide Web and telephone communication, CD players and pictures from Mars would be impossible
without it, to mention just a few things that come to mind). The fact that I am using computers
extensively in order to do my research in combinatorics should not be held for or against it, it is
just another (legitimate) tool.

On the ‘middle level’, by using symbolic computation on a day-to-day basis, and trying to develop
new algorithms (like in WZ theory), this research contributes, both directly and indirectly, to
computer algebra, which is emerging as an indispensable tool not only in mathematics, but in all
of science and technology.

Finally, on the ‘highest-level’, this research contributes to a new outlook and awareness in mathe-
matical research. Mathematical research, until now, was paper and pencil and a priori, and people
like Appel and Haken and Thomas Hales have to be apologetic and defensive about using comput-
ers. The computer is a mighty tool, go forth and use it! But we humans must think of creative
ways of utilizing its immense potential, over-and-above its obvious use as a ‘numerical and symbolic
calculator’ and ‘brute force number- (and symbol-) cruncher’. We urgently need to develop new
methodologies to enable us to make full use of computers. The potential applications are unforesee-
able, but I am sure that future computer mathematics will make all past and present mathematics
look like Mickey-Mouse stuff. But these new advances will not come by themselves. The role of the
human mathematician would have to change from that of ‘athlete’ to that of ‘coach’, and this would
also necessitate a change in mentality. I hope that my preaching (in my papers and the opinion
column of my website), courses and seminars on Experimental Mathematics, and especially research
(both the research papers viewed as case studies, and the more philosophical and methodological
papers), will form a modest, yet strictly positive, beginning. If we build it (a new experimental
methodology for mathematics), they will come (present and future mathematicians will practice
it.)

Similarly, the broader impact should also be judged on more than one level. Combinatorics
per se, and Computer Algebra, are both essential to science, technology, and even entertainment.
But, more generally, mathematics, as a whole, is one of the greatest pillars of our civilization and
culture, both spiritually and materially. Helping change the way we practice mathematics (for the
better, I am sure), would have the broadest impact on mathematics itself. And what’s good for
mathematics is good for humanity.
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