
By Doron ZEILBERGER1

[Silence for 30 seconds]. I always dreamed about giving a talk about nothing. First, I thought of
just standing here, saying nothing, for the whole fifty minutes, but with people’s attention spans
today-they have trouble focusing only on one thing at a time- I find it hard to believe that people
would be able to handle doing zero things for 50 minutes. Also, even I would probably get bored
not saying anything for so long, so let me say something about nothing.

Every math talk is supposed to contain at least one proof. Myself, I hate proofs, so let me get it out
of the way. But not all proofs are that bad. Here is a rather nice one featuring today’s protagonist:
Nothing .

Theorem: (anon.) A ham sandwich is better than good sex.

Proof: (anon.) The following two assertions are obvious.

1. A ham sandwich is better than Nothing .

[Indeed, I am both Jewish and Vegetarian, so I would try very hard not to eat it, but if I were
stuck on a desert island, and had nothing to eat for five days, I admit that I would eat it, and it is
better than nothing.]

2. Nothing is better than Good Sex .

The theorem follows by the transitivity of the is better relation.

Having gotten the perfunctory proof out of the way, let me talk a little more about nothing.

The analog of Nothing in number theory is zero, which is the most important number of all
numbers. To my surprise, when I googled zero a few hours ago, it only got about 243 · 106 hits,
while one got about 2.06 ·109 hits, an order-of-magnitude higher, and zero only ranked somewhere
between eight (280 · 106) and nine (197 · 106). So the moral is that you can’t tell the importance
of something just by the number of google hits, a fact that I should remember when I pride myself
that my own number of google hits is higher than those of most Fields medalists.

And indeed the invention of zero was one of the greatest accomplishments of human-kind, compa-
rable to the discovery of fire.
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If zero is the most important number then the empty set, ∅, is the most important set.

My favorite computer algebra system, MapleTM , can, of course, handle both zero and ∅, the latter
being denoted by { }, both of which represent nothing in some sense. But it has an even more
nothing object.

Try to do the following in Maple:

solve({0 = 1},x); ,

and see what you get. You get absolutely nothing, not even the empty set. If you then ask it

evalb(%=NULL); ,

you would get true, so Maple’s name to the epitome of nothingness is NULL.

Speaking of Nothing, once there was a factory that invited an industrial engineer to see whether
things can be made more efficient and streamlined, and whether it would be possible to eliminate
some jobs due to duplications. So the engineer sees a worker who seems to be idle, and asks him:
“what are you doing all day?”, “Nothing”, he replied. The engineer says “thank you” and goes
on. A while later, the engineer sees another worker who seems to be idle, and asks him the same
question, and gets the same answer, “Nothing”. The engineer then recommends to the manager to
fire that other guy. “But that’s unfair, exclaimed the worker, that first guy is also doing nothing,
and you didn’t fire him!”. The engineer replied: “That’s exactly my point, we don’t need two
different people doing the same thing!”

So Nothing is really something, but only one thing.

Let me also remind you that zero, like all of mathematics, is fictional and an idealization. It is
impossible to reach absolute zero temperature or to get perfect vacuum. Luckily, mathematics is a
fairyland where ideal and fictional objects are possible.

Furthermore, let me take issue with Three Dog Night who claimed that one is the loneliest number.
It is not at all lonely. I never get lonely with my own company, but would feel depressed without
it, so zero is the loneliest number, and one is (good!) company, and two (not three!) is already a
crowd.

The Empty Set

In the 19th century, Leopold Kronecker famously said that “God created the integers, all the rest
is man-made”. A bit later, about a hundred years ago, mathematicians and logicians thought that
even integers are too complex to be really fundamental, and they tried to reduce everything, in
particular integers, to sets. So the great computer pioneer, John von Neumann, when he was still
rather young, came with a brilliant way to define integers in terms of sets, and all he really needed
was a starting point: the empty set.
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So according to von Neumann:

0 := ∅ .

Now we have one object at our disposal, so let us form the set consisting of what we have so far:

1 := {∅} .

Now, at the second day, let’s gather what we had so far, and make them into a set

2 := {∅, {∅}} ,

and at the third day, let’s define

3 := {∅, {∅}, {∅, {∅}}} ,

and, in general
n := (n− 1) ∪ {n− 1} ,

ad infinitum.

But von Neumann’s construction can only handle integers, starting with the empty set. What
about other kinds of numbers?

About thirty-five years ago, John Horton Conway realized something revolutionary. All numbers
are games! Now there are many games that are not numbers, so game is a more fundamental object
than number. According to his own account, he felt a bit guilty that during the research slump
that hit him after discovering the Conway groups, he hardly did any mathematics, but spent most
of the day playing games at the common room of his Cambridge college. Only later did he realize
that playing games is research, and furthermore, more interesting and significant than the vast
majority of his colleagues’ research, since it lead him to the great idea that numbers are games.

What is a game? The kind of games that Conway handles are partizan games, with two players
Left (L) and Right (R), with perfect information, perfect players, and no chance.

A game in Conway’s sense is really a game position, so Chess is not really one game but billions of
different games, each corresponding to a (legal) position on the board. A game can be completely
characterized by Left’s options, which is a certain set of games, and by Right’s options, which is
another set of games. So we have the recursive definition:

Game := [SomeSetOfSimplerGames,AnotherSetOfSimplerGames] .

Who wins and who loses such a game? The convention is that if it is your turn to move, and there
is nothing you can do then you lost.
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The simplest conceivable game is where both Left’s and Right’s sets of options happen to be the
empty set. He calls it the zero game.

0 := [∅, ∅] .

Who wins the zero game? If L goes first, he lost, since there is nothing he can do. Likewise, if
R goes first, he lost, since there is nothing he can do. So the second player wins, regardless of
race, sex, sexual orientation, or in our case, political views. Conway defines a zero game to be a
game that has this property that the second player wins. There is only one “the zero game”,
but there are lots and lots of “a zero game”, namely all those for which the second player wins
regardless .

So much for the only “game” that was created at day 0. What games are born at day 1?

Now we have two sets at our disposal, ∅ and {0}. This gives rise to 2 × 2 = 4 pairs of sets, but
since 0 = [∅, ∅] has already been created yesterday, we only have three new ones

[{0}, ∅] , [∅, {0}] , and [{0}, {0}]

that Conway christened 1, −1 and ∗, respectively. ∗ is the simplest game that is not a number.

Who wins 1? If L goes first, he may (in fact must!) go to game 0, and it is R’s turn to go, and
of course, poor R has nothing to do, so R loses and L wins. If R goes first, then poor R can’t do
anything, and again he loses. So the game 1 is always won by L. 1 is the simplest number that
is positive, and Conway defines a positive game to be one for which L wins regardless of who
starts.

Who wins −1? If R goes first, he may (in fact must!) go to game 0, and it is L’s turn to go, and
of course, poor L has nothing to do, so L loses and R wins. If L goes first, then poor L can’t do
anything, and again he loses. So the game −1 is always won by R. −1 is the simplest number that
is negative, and Conway defines a negative game to be one for which R wins regardless of who
starts.

Finally, who wins ∗ := [{0}, {0}]? If L goes first then R must play the 0 game, and loses it, of
course. Likewise, if R goes first then L must play the 0 game, and loses it, of course. So for ∗,
the first player wins regardless of who starts it. Such games are called fuzzy, since they are not
numbers, and any game that has the property that the first player always wins is called a fuzzy
game.

Now we can go to day 2, day 3, and so on, and define more and more complicated games, and for
each of these we can determine (recursively!) whether they happen to be zero, fuzzy, positive, or
negative. But we haven’t yet defined number, and reconcile the usual meaning of “positive” and
“negative” with Conway’s meanings.

A number is defined very similarly to a game.

Number := [SomeSetOfSimplerNumbers,AnotherSetOfSimplerNumbers] ,

4



but with the additional condition that the members of the right set are all “bigger” than all the
members of the left set. More formally, the definition of number is a pair of sets [XL, XR], with the
condition that you cannot find xR ∈ XR, xL ∈ XL such that xR ≤ xL.

But what does it mean for a number to be ≤ another number? The relation ≤ is also defined
recursively

x(= [XL, XR]) ≤ y(= [YL, YR]) ,

iff it can never happen that xL ∈ XL and y ≤ xL and it can never happen that yR ∈ YR and
yR ≤ x .

Finally, one can naturally define the minus of a game (or number)

−[XL, XR] := [−XR,−XL] ,

(−X is the set of −x for x ∈ X),

and the sum is defined (again recursively):

H +G = [ (HL +G) ∪ (GL +H) , (H +GR) ∪ (HR +G) ] .

(Given a set of games A and a game G, A+G is the set of games A+G, for all A ∈ A).

This makes sense, since if we have two games on the table, H and G and it is Left’s turn, he
may decide to work on the H game, leaving G intact, or on the G game, leaving H intact, and
analogously for Right’s options.

There is a charming little book called “Surreal Numbers” by guru Don Knuth, where two lovers,
Alice and Bob, stuck on a tropical island, develop the theory from scratch just using a few lines
written in a stone they found. Of course, Alice and Bob are fictional, but you are at least as smart
as they are. Anyway, in order to have the fictional Alice and Bob develop the theory of surreal
numbers, their creator, Don Knuth, had to do it first, and he did it just from the few definitions
that Conway told him over lunch. I strongly recommend that you read Knuth’s charming little
booklet, but I challenge you, before you read it, to try and develop the theory, on your own, as
much as possible, and then compare notes with the book. Since, you are not stranded in an island,
you have one advantage over Alice and Bob, that you can program everything. so I also hope
that some of you will program the definitions and test the theorems, since the best way to learn
something new is to program it.

As you will develop the theory, you would have to prove lots of things inductively, since all the
definitions are recursive. But again and again you would encounter situations where you have to
check something about the empty set. So let me conclude with the take-home message of this
talk, that is useful here and elsewhere:

ANY PROPERTY, WHATSOEVER, IS TRUE FOR EVERY MEMBER OF THE EMPTY
SET.
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