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Preamble

Let p(n) be the number of integer partitions of n. Euler famously proved that

∞∑
n=0

p(n)qn =
∞∏
i=1

1
1− qi

.

Srinivasa Ramanujan famously discovered (by glancing at a table of p(n) for 1 ≤ n ≤ 200, computed
by the analytic machine, Major Percy Alexander MacMahon’s head) the three congruences

p(5m+ 4) ≡ 0 (mod 5) ,

p(7m+ 5) ≡ 0 (mod 7) ,

p(11m+ 6) ≡ 0 (mod 11) .

The first two are really easy, and the proofs that G.H. Hardy chose to present in his classic book
“Ramanujan” ([Ha], pp. 87-88), slightly streamlined, go as follows.

First recall the (purely elementary and shaloshable) identities of Euler and Jacobi :

E(q) =
∞∏
i=1

(1− qi) =
∞∑

n=−∞
(−1)nq(3n

2+n)/2 , and

E(q)3 =
∞∑
n=0

(−1)n(2n+ 1)q(n
2+n)/2 .

Also recall the obvious fact (but extremely useful [e.g. the AKS algorithm!] ), that follows from
the binomial theorem, that for every prime `, and any polynomial, or formal power series, f(q),
f(q)` ≡ f(q`) (mod `) . In particular E(q)` ≡ E(q`) (mod `) .

p(5n+4) is divisible by 5

Since {(n2 + n)/2 mod 5 ; 0 ≤ n ≤ 4 , 2n+ 1 6≡ 0 (mod 5)} = {0, 1}, we have:

E(q)3 ≡ J0 + J1 (mod 5) ,

where Ji consists of those terms in which the power of q is congruent to i modulo 5. Now

∞∑
n=0

p(n)qn = E(q)−1 =
(E(q)3)3

E(q)10
=

(E(q)3)3

(E(q)5)2
≡ (J0 + J1)3

E(q5)2
(mod 5) .
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Since (J0 + J1)3 = J3
0 + 3J2

0J1 + 3J0J
2
1 + J3

1 , whose terms consist of powers of q that are 0, 1, 2, 3
modulo 5, respectively, none of the powers of q that are congruent to 4 modulo 5 show up, and
hence the coefficient of q5n+4 is always 0 modulo 5.

p(7n+5) is divisible by 7

Since {(n2 + n)/2 mod 7 ; 0 ≤ n ≤ 6 , 2n+ 1 6≡ 0 (mod 7)} = {0, 1, 3}, we have:

E(q)3 ≡ J0 + J1 + J3 (mod 7) ,

where Ji consists of those terms in which the power of q is congruent to i modulo 7. Now

∞∑
n=0

p(n)qn = E(q)−1 =
(E(q)3)2

E(q)7
≡ (J0 + J1 + J3)2

E(q7)
(mod 7) ,

Since (J0 + J1 + J3)2 = J2
0 + J2

1 + J2
3 + 2J0J1 + 2J0J3 + 2J1J3, whose terms consist of powers

of q that are 0, 2, 6, 1, 3, 4 modulo 7, respectively, none of the powers of q that are congruent to 5
modulo 7 show up, and hence the coefficient of q7n+5 is always 0 modulo 7.

At the bottom of page 88 of Hardy’s above-mentioned classic “Ramanujan”[Ha], he states

“There does not seem to be an equally simple proof that p(11n+ 6) is divisible by 11”.

Over the years there were many proofs, but none as simple and elementary and, most impor-
tantly, beautiful!, as the one recently found by Michael Hirschhorn [Hi].

Michael Hirschhorn’s proof for p(11n+6)

The proof in [Hi] goes like this. It starts the same way.

Since {(n2 + n)/2 mod 11 ; 0 ≤ n ≤ 10 , 2n+ 1 6≡ 0 (mod 11)} = {0, 1, 3, 6, 10}, we have:

E(q)3 ≡ J0 + J1 + J3 + J6 + J10 (mod 11) ,

where Ji consists of those terms in which the power of q is congruent to i modulo 11. Now

∞∑
n=0

p(n)qn = E(q)−1 =
(E(q)3)7

E(q)22
≡ (J0 + J1 + J3 + J6 + J10)7

E(q11)2
(mod 11) .

Alas, now the part consisting of the powers that are congruent to 6 modulo 11 in the polynomial
(J0 + J1 + J3 + J6 + J10)7 (mod 11) is not identically zero modulo 11, but a certain polynomial
of degree 7 in {J0, J1, J3, J6, J10}, (over GF (11)) let’s call it POL.

It is readily seen that, introducing an auxiliary variable t, that

POL(J0, J1, J3, J6, J10) = Coefft6
(
J0 + J1t+ J3t

3 + J6t
6 + J10t

10
)7

(mod 11) (mod t11−1) ,
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that is not identically zero.

But, Since {(3n2 + n)/2 mod 11 ; 0 ≤ n ≤ 10 } = {0, 1, 2, 4, 5, 7}, we have,

E(q) = E0 + E1 + E2 + E4 + E5 + E7 ,

where Ei consists of those terms in which the power of q is congruent to i modulo 11, and

(E(q)3)4 = E(q)12 = E(q)11E(q) ≡ E(q11)E(q) (mod 11) ,

so
(J0 + J1 + J3 + J6 + J10)4 ≡ E(q11)(E0 + E1 + E2 + E4 + E5 + E7) (mod 11) .

By expanding the left side and extracting the complementary powers (mod 11) ( {3, 6, 8, 9, 10}),
we get five polynomials of degree 4, let’s call them Q3, Q6, Q8, Q9, Q10 that we know are 0 modulo
11 (once the Ji’s are replaced by the formal power series they stand for). For m ∈ {3, 6, 8, 9, 10},
we have

Qm(J0, J1, J3, J6, J10) = Coefftm
(
J0 + J1t+ J3t

3 + J6t
6 + J10t

10
)4

(mod 11) (mod t11−1) .

Then we ask our beloved computer to find five polynomials of degree 3, (in the variables {J0, J1, J3, J6, J10}),
let’s call them R3, R6, R8, R9, R10, such that

POL ≡ R3Q3 +R6Q6 +R8Q8 +R9Q9 +R10Q10 (mod 11) .

Since it succeeded (a priori there was no guarantee!), we are done!! Quod Erat Demonstratum.

See the output file http://www.math.rutgers.edu/~zeilberg/tokhniot/oHIRSCHHORN1v, that
contains the above three proofs, (and four other ones!), that was generated, by running the Maple
package HIRSCHHORN (that accompanies this article), in three seconds!

More Ramanujan Type Congruences

Let’s consider, more generally,

∞∑
n=0

p−a(n)qn =
∞∏
i=1

1
(1− qi)a

.

(Note that p−1(n) = p(n) and p24(n) = τ(n− 1), where τ(n) is Ramanujan’s τ -function).

There are many known Ramanujan-type congruences for p−a(n). Matthew Boylan [B] (Theorem
1.3, where our p−a(n) is denoted by pa(n), and the entry r = 27, l = 31 is erroneous) has found all
of them for a odd and ≤ 47.

The first few are (here we restricted our search to primes ≥ 2a+ 1).

p−1(5n+ 4) ≡ 0 (mod 5) , p−1(7n+ 5) ≡ 0 (mod 7) , p−1(11n+ 6) ≡ 0 (mod 11) ,
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(Ramanujan’s)

p−2(5n+ 2) ≡ 0 (mod 5) , p−2(5n+ 3) ≡ 0 (mod 5) , p−2(5n+ 4) ≡ 0 (mod 5) ,

p−3(11n+ 7) ≡ 0 (mod 11) , p−3(17n+ 15) ≡ 0 (mod 17) ,

p−5(11n+ 8) ≡ 0 (mod 11) , p−5(23n+ 5) ≡ 0 (mod 23) ,

p−7(19n+ 9) ≡ 0 (mod 19) ,

p−9(19n+ 17) ≡ 0 (mod 19) , p−9(23n+ 9) ≡ 0 (mod 23) ,

p−21(47n+ 42) ≡ 0 (mod 47) .

Thanks to the impressive algorithm of Silviu Radu[R1], every such congruence (and even more
general ones, see [R1]), is effectively (and fairly efficiently!) decidable. Let’s hope that Radu would
post a public implementation of his method. Since no such an implementation seems to exist, we
Emailed Radu, who kindly[R2] showed us how to deduce these (except for the last two, that we
are sure can be done just as easily) from his powerful algorithm, by specifying the N0 for which
checking them for 0 ≤ n ≤ N0 would imply them for all 0 ≤ n <∞.

As impressive as Radu’s algorithm is, it is not elementary. It uses the ‘fancy’, and intimidating,
theory of modular functions, that being analytic, is not quite legitimate according to our finitis-
tic philosophy of mathematics. Hence it is still interesting (at least to us!) to find elementary,
Hirschhorn-style proofs. Also, by the principle of serendipity our extension and implementation of
Hirschhorn’s method may lead to new things that even modular functions can not do.

Extending Hirschhorn’s Method

Suppose that, for some prime ` and some integer r (0 ≤ r < `), we want to prove a congruence of
the type

p−a(`n+ r) ≡ 0 (mod `) .

We first find the smallest integer α such that b := (α`− a)/3 is an integer, noting that

E(q)−a =
(E(q)3)b

E(q)α`
≡ (E(q)3)b

E(q`)α
(mod `) .

We now define the subset of {0, 1, . . . , `− 1}:

Jset(`) := {(n2 + n)/2 mod ` ; 0 ≤ n ≤ `− 1 , 2n+ 1 6≡ 0 (mod `)} ,

and write
E(q)3 ≡

∑
i∈Jset(`)

Ji (mod `) ,
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where Ji consists of those terms in which the power of q is congruent to i modulo `. Next we define
POL to be the polynomial, in the set of variables {Ji ; i ∈ Jset(`)},

POL({Ji ; i ∈ Jset(`)}) = Coefftr


 ∑
i∈Jset(`)

Jit
i

b
 (mod `) (mod t` − 1) .

Now, if we are lucky, the polynomial POL({Ji}) would be identically zero (modulo `). In that
case we have a Ramanujan-style proof, since the powers of q that are congruent to r modulo ` in
((E(q)3)b, and hence in E(q)−a, do not show up!

Otherwise, we need to resort to Hirschhorn’s enhancement.

Analogously to Jset(p), let’s define

Eset(`) := {(3n2 + n)/2 mod ` ; 0 ≤ n ≤ `− 1} ,

the set of residue classes modulo ` that show up as powers in the sparse Euler Pentagonal Theorem
expression for E(q).

Now let c be the reciprocal of 3 modulo `, and let d = (3c− 1)/`. Then

(E(q)3)c = E(q)E(q)3c−1 = E(q)E(q)d` ≡ E(q)(E(q`))d (mod `).

Now define a set of polynomials, for each 0 ≤ m < ` that is not in Eset(`) (i.e. for the members
of the complement of Eset(`)):

Qm := Coefftm

 ∑
i∈Jset(`)

Jit
i

c (mod `) (mod t` − 1) , m 6∈ Eset(`) .

We know that all the Qm({Ji}) [m 6∈ Eset(`)] are 0 modulo ` (once the J ′is are replaced by the
formal power series, in q, that they stand for).

Finally, we decide whether the polynomial POL (that lives in the polynomial ring over the Galois
Field GF (`) in the Ji’s), or one of its powers, belongs to the ideal generated by the polynomials
Qm. This can be done (for small `) either directly, using undetermined coefficients, and for larger
`, using Gröbner bases.

The Big Disappointment

We naively hoped that Hirschhorn’s method, as explicated and generalized above, would work for
all of these other congruences. To our dismay, it failed to prove the congruence p−3(17n+ 15) ≡ 0
(mod 17).

It turns our that for the specialization

J0 = 1 , J1 = 1 , J3 = 2 , J4 = 10 , J6 = 9 , J10 = 11 , J11 = 15 , J15 = 12 ,
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all the Qm are zero (modulo 17) but POL ≡ 6 (mod 17) 6= 0. So, of course, POL is not in the
ideal generated by the Qm in GF (17)[J0, J1, J3, J4, J6, J10, J11, J15].

But there is Hope

The Euler and Jacobi identities are but the first two in an infinite sequence of identities, the
Macdonald identities[M] made famous in Freeman Dyson’s[D] historic 1972 Gibbs Lecture.

In fact, the next-in-line in Macdonald’s identities, earlier found by Winquist[W], was already used
to give “a Ramanujan-style proof” of p(11m + 6) ≡ 0 (mod 11). We strongly believe that every
Ramanujan-type congruence that can be proved using Radu’s[R1] beautiful algorithm (that relies
on the theory of modular functions), has either a “Ramanujan-style”, or “Hirschhorn-style” proof,
by using one of the Macdonald identities, that in spite of their “fancy” pedigree (Lie theory) are
purely elementary.

The Maple package HIRSCHHORN

Everything (and more) is implemented in the Maple package HIRSCHHORN available from

http://www.math.rutgers.edu/~zeilberg/tokhniot/HIRSCHHORN .

The webpage

http://www.math.rutgers.edu/~zeilberg/mamarmim/mamarimhtml/mh.html

contains several computer-generated articles outputted by that package.

Gröbner via special cases

For ` > 11, both POL and the {Qm} get too big for Maple. But by doing sufficiently many
specializations (mod `) for a subset of the variables J ′is one can get a fully rigorous proof of ideal
membership. See procedures TerseMikeProof, TerseMikeProofG, TerseMikeProofGviaSC, that
use, respectively, undetermined coefficients, Groöbner bases, and Groöbner bases via special cases.
As we already pointed out above, we are not always guaranteed success.

Future Directions

We believe that our extension of Hirschhorn’s method could be generalized to more general q-series,
including those that are not modular functions.

FIRST Encore: The Maple package BOYLAN

The Maple package BOYLAN available from

http://www.math.rutgers.edu/~zeilberg/tokhniot/BOYLAN

reproduces and extends Theorem 1.3 of [Bo], albeit empirically.
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See

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBOYLAN1

for a reproduction of the original (in less than two seconds), and

http://www.math.rutgers.edu/~zeilberg/tokhniot/oBOYLAN2

for many more congruences (going as far as a = 399).

SECOND Encore: Infinitely Many Congruences (All having Ramanujan-style proofs!)

Now that, thanks to Radu[R1], any specific congruence of the form p−a(`n + r) ≡ 0 (mod `), is
purely routine (or, more politely, algorithmically provable, or shaloshable), the next stage would be
to come up with “infinitely many congruences”.

There is, of course, a cheap way to get “infinitely many” such congruences, namely when a = `− 3,
since

1
E(q)`−3

≡ E(q)3

E(q`)
(mod `),

and since the set Jset(`) is about one half of all residue classes, we get many r’s (all the members
of the complement of Jset(`)).

But, a little less trivially, we can generalize the Ramanujan proof of p(7n + 5) ≡ 0 (mod 7), to
the following proposition (we hesitate to call it a theorem, for two reasons. First it is a bit shallow,
and second we only have a sketch of a proof [that we are sure can be easily completed, but we have
better things to do]).

Proposition: Let ` be a prime that is either 7 or 11 modulo 12 and let r := (`− 6)/24 (mod `),
then

p−(`−6)(n`+ r) ≡ 0 (mod `) .

Sketch of a Ramanujan style proof. It is easy to see that r := (`−6)/24 (mod `) 6∈ Jset(`)+
Jset(`) (mod `), thanks to the following (presumably elementary lemma, verified empirically for
` ≤ 2000).

Elementary Lemma: Let ` be a prime that leaves remainder 7 or 11 when divided by 12. Then
for any 0 ≤ n1, n2 < ` such that

n1(n1 + 1)
2

+
n2(n2 + 1)

2
≡ r (mod `) ,

we must have either n1 = (`− 1)/2 or n2 = (`− 1)/2.

Using the lemma it follows that

1
E(q)`−6

=
(E(q)3)2

E(q`)
≡

(
∑
i∈Jset(`) Ji)

2

E(q`)
(mod `)
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and the powers that are r modulo ` do not show up.

It would be interesting to come up with an infinite family provable by Hirschhorn-style proofs!

Acknowledgment: We are grateful to George Andrews, Bruce Berndt, Lev Borisov, Shawn
Cooper, Frank Garvan, and Michael Hirschhorn, for very useful advice, and to Silviu Radu for
permission to post [R2].

References

[B] Matthew Boylan, Exceptional congruences for powers of the partition functions, Acta Arith.
111 (2004), 187-203.

[D] Freeman J. Dyson, Missed opportunities, Bulletin of the American Mathematical Society 78
(1972), 635652.

[Ha] G.H. Hardy, “Ramanujan”, Cambridge University Press, 1940.

[Hi] Michael D. Hirschhorn, A short and simple proof of Ramanujan’s mod 11 partition congruence,
preprint available from
http://web.maths.unsw.edu.au/~mikeh/webpapers/paper188.pdf

[M] I.G. Macdonald, I. G., Affine root systems and Dedekind’s -function, Inventiones Mathematicae
15 (1972), 91143

[R1] Silviu Radu, An algorithmic approach to Ramanujan’s congruences, Ramanujan J. 20 (2009),
215-251 .

[R2] Silviu Radu, Email message to Doron Zeilberger,
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/SilviuRaduMessageJune2013.pdf

[W] Lasse Winquist, An elementary proof of p(11m+ 6) ≡ 0 (mod 11), J. Combinatorial Theory
6, 5659.

Edinah K. Gnang, Computer Science Department, Rutgers University (New Brunswick), Piscat-
away, NJ 08854, USA. gnang at cs dot rutgers dot edu

Doron Zeilberger, Mathematics Department, Rutgers University (New Brunswick), Piscataway, NJ
08854, USA. zeilberg at math dot rutgers dot edu

8


