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Abstract: Given positive integers r and s, We use inclusion-exclusion, weighted-counting of tilings,

and dynamical programming, in order to enumerate, semi-efficiently, the classes of permutations

mentioned in the title. In the process we revisit beautiful previous work of Enrique Navarette,

Robert Taurasu, David Robbins (to whose memory this article is dedicated), and John Riordan.

We conclude with two proofs of John Riordan’s recurrence (from 1965) for the enumerating sequence

for permutations that adjacent entries can’t have adjacent values (the r = 1, s = 1 case of the title in

the sense of absolute value). The first is fully automatic using the (continuous) Almkvist-Zeilberger

algorithm, while the second is purely human-generated via an elegant combinatorial argument.

Important: Maple Package and Output Files

This article is accompanied by a Maple package ResPerms.txt downloadable from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/ResPerms.txt .

The front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/perms.html

contains many input and output files.

How it all Started

A few months ago we came across a lovely paper by Manuel Kauers and Christoph Koutschan [KK]

where they described how to guess recurrences satisfied by ‘hard to compute sequences’ where one

can get very plausible conjectured recurrences for sequences with far fewer ”data points” than is

needed for traditional guessing with undetermined coefficients. As a very impressive case study

they found a conjectured linear recurrence with polynomial coefficients enumerating the number of

permutations π of {1, . . . , n} such that

πi+2 − πi 6= 2 .

This is sequence A189281 in the OEIS (https://oeis.org/A189281) [S22], that initially took a

very long time to compute the first 35 terms, hence it was labeled hard, and there was no a priori

theoretical guarantee that it is holonomic, i.e. satisfies a linear recurrence equation with polynomial

coefficients, surprisingly turned out to most likely be one. The traditional vanilla method of of
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guessing a recurrence of order r and degree d requires at least (r + 1)(d + 1) + r + 1 data points,

and the number of terms given in the OEIS at the time (computed, with lots of computer time

and memory by Vaclav Kotesovec) did not work, one needed more data. Using their ingenious new

method of ”guessing with little data” they conjectured a linear recurrence equation of order 8 and

degree 11 (that would require (8 + 1) · (11 + 1) + 8 + 1 = 117 data points. They only used 35 terms!

Assuming that conjecture is true one of us (DZ) found an equivalent recurrence of order 13 and

degree 3 that would necessitate (13 + 1) · (3 + 1) + 13 + 1 = 70 data points (still twice as many).

But even with the new method one needs efficient ways to generate as many terms as possible. We

would like to efficiently count the following two kinds of sequences, for any positive integers r and

s

ar,s(n) := #{π ∈ Sn |πi+r − πr 6= s for all 1 ≤ i ≤ n− r} ,

and

br,s(n) := #{π ∈ Sn | |πi+r − πr| 6= s for all 1 ≤ i ≤ n− r} .

(For any finite set S, #S denotes its number of elements).

Past Work

For the sequences a1,s for any s, Enrique Navarrete found a beautiful explicit formula, using a

clever inclusion-exclusion argument

Theorem (E. Navarrete [N]) for all s ≥ 1 and n ≥ s,

a1,s(n) =

n−s∑
j=0

(−1)j
(
n− s
j

)
(n− j)! .

Using the Zeilberger algorithm[Z1] we immediately get

Corollary For s ≥ 1 and for n ≥ 2 we have

a1,s(n) = (n− 1) a1,s(n− 1) + (n− s+ 1) a1,s(n− 2)

In the last section we will give a combinatorial proof.

The sequence b1,1(n) is famous! It is sequence A2464 [S11a] https://oeis.org/A002464, called

Hertzsprung’s problem, and its description in the OEIS is:

ways to arrange n non-attacking kings on an n × n board, with 1 in each row and column. Also

number of permutations of length n without rising or falling successions.

The combinatorial giant, John Riordan [R] proved a nice fourth-order recurrence

b1,1(n) = (n+ 1) b1,1(n− 1) − (n− 2) b1,1(n− 2) − (n− 5) b1,1(n− 3) + (n− 3) b1,1(n− 4) .

2



We will later give two new proofs. The first using the continuous Almkvist-Zeilberger algorithm

[AZ], and the second using an elegant combinatorial argument.

Our hero, Dave Robbins [R], used a clever inclusion-exclusion argument to prove the following

double sum

b1,1(n) =

n−1∑
i=0

(−1)i(n− i)!
i∑

c=1

(
i− 1

i− c

)(
n− i
c

)
2c .

We will later use Dave Robbins’ approach to study, and efficiently compute, the sequences b1,s(n)

for s > 1, none of which are (yet) in the OEIS.

To conclude this historical section let’s mention which sequences are currently (Oct. 2022) in the

OEIS:

• a1s(n) for 1 ≤ s ≤ 5, see references [S11],[S12],[S13],[S14],[S15] respectively.

• arr(n) for 1 ≤ r ≤ 6, see references [S11],[S22],[S33],[S44],[S55],[S66] respectively.

• brr(n) for 1 ≤ r ≤ 6, see references [S11a],[S22a],[S33a],[S44a],[S55a],[S66a] respectively.

Mone of the sequences ars(n) and brs(n) with r > 1, s > 1 and r 6= s are yet (Oct. 2022) in the

OEIS.

In the next section we will show how to compute many terms of these new sequences and compute

many more terms for the sequences arr(n) and brr(n), 2 ≤ r ≤ 6, that are already in the OEIS.

Semi-Efficient Computation of the sequences ar,s(n)

We will use the old workhorse of inclusion-exclusion but with a new twist, that would make it

amenable for symbolic computation.

Fix r ≥ 1 and s ≥ 1. We want to count all the good guys, i.e. permutations of {1, . . . , n} such that

none of the following n− r unfortunate events are committed

πr+1 − π1 = s , πr+2 − π2 = s , . . . , πn − πn−r = s .

As usual, instead of counting good guys, we do a signed counting of all pairs,

[guy, S] ,

where guy is any permutation, and S is a subset (possibly empty, possibly the the whole) of its set

of unfortunate events. (See [Z3] for an engaging account). Each such pair contributes (−1)#S to

the total sum. While this new signed sum has many more terms, and is extremely inefficient when

applied to specific sets, it isa great theoretical tool when used cleverly by humans (and computers!).

Looking at the structure of this possible set of unfortunate events, we see that the board {1, 2, . . . , n}
has a certain subsest of the set of pairs

{{1, r + 1} , {2, r + 2} , . . . , {n− r, n}} ,
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(right now we are ignoring entries of the permutation. Think of them as a collection of arcs r

apart). Each such configuration naturally forms into a disjoint union of connected components.

All the entries that do not participate are really singleton tiles. So looking at the possible connected

components, we see a natural tiling of the ‘board’ {1, 2, . . . , n} into horizontal shifts of tiles of the

form

{1} , {1, 1 + r} , {1, 1 + r, 1 + 2r} , {1, 1 + r, 1 + 2r, 1 + 3r} , . . . .

So let’s introduce variables x[1], x[2], x[3] . . . and declare that the weight of the tile t is x[#t]. In

particular, the weight of a singleton is x[1]. The weight of a tiling is the product of the weights of

all its constituent tiles.

Suppose that r = 2 and s = 3, n = 9 and the set of marked unfortunate events happens to be:

{π3 − π1 = 3 , π5 − π3 = 3 , π9 − π7 = 3} .

Since {1, 3} and {3, 5} form a connected component {1, 3, 5}, and {7, 9} forms its own connected

component, and the integers not participating in these two connected components are all singletons,

This gives the tiling

{{1, 3, 5} , {7, 9}, {2}, {4}, {6}, , {8}} .

So let’s define a polynomial in the (potentially infinite, but for any given n finite) set of variables

x1, x2, x3, . . .

fr,n(x1, x2, x3 . . .) :=
∑

Tweight(T ) ,

where the sum is taken over all the tilings of the board {1, 2, . . . , n} by the tiles (i.e. horizontal

shifts) of

{1}, {1, 1 + r}, {1, 1 + r, 1 + 2r}, . . . .

For example

f3,5(x1, x2, x3) = x51 + 2x31x2 + x1x
2
2 ,

since

• There is one tiling with all singletons (horizontal shifts of {1}:, namely

{{1}, {2}, {3}, {4}, {5}}

whose weight is x1
5.

• There are two tilings with 3 singletons and one horizontal shifts of {1, 3}, namely

{{1, 4}, {2}, {3}, {5}} , {{2, 5}, {1}, {3}, {4}} ,

each of whose weight is x1
3x2.
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• There is one tiling with 1 singleton and two horizontal shifts of {1, 3}, namely

{{1, 4}, {2, 5}, {3}} ,

whose weight is x1x2
2.

Using dynamical programming (see [Z2]) it is very fast to compute these polynomials. Since these

weight-enumerators of tilings are so central to our approach, we invite our readers to convince

themselves that

f3,7(x1, x2, x3) = x71 + 4x51x2 + x41x3 + 5x31x
2
2 + 2x21x2x3 + 2x1x

3
2 + x22x3 .

This implemented in procedure fsn(r,n,x) in our Maple package.

But there is another tiling present. If you look at the values of the violations, you have a natural

tilings with tiles

{1} , {1, 1 + s}, , {1, 1 + s, 1 + 2s} , {1, 1 + s, 1 + 2s, 1 + 3s} ,

whose weight-enumerator is fs,n(x1, x2, . . .).

For example, look at the pair that comes up in trying to compute a2,3(9)

[326195487, {π3 − π1 = 3, π5 − π3 = 3, π9 − π7 = 3}] ,

looking at the values we have the tiling

{{3, 6, 9}, {4, 7}, {1}, {2}, {5}, {6}} .

whose weight is also x41x2x3.

Now write

fr,n(x1, . . . , xn) =
∑

C(n,r)
α xa11 x

a2
2 · · ·xann ,

where the sum ranges over all integer partitions 1a12a2 . . . nan , written in frequency notation,

so 1 · a1 + 2 · a2 + . . .+ n · an = n (note that if r = 1 all partitions show up, but when r > 1 then

some never show up).

Finally we are ready to state our ‘formula’ for ar,s(n).

ar,s(n) =
∑

C(n,s)
α · C(n,r)

α · (−1)a1+a2+...+an−na1!a2! · · · an! ,

where the sum ranges over all partitions of n α = 1a12a2 . . . nan , written in frequency notation.

Let’s explain. Any set of unfortunate events gives rise to two tilings one with tiles {1}, {1, 1 +

r}.{1, 1 + r, 1 + 2r}, . . . care by the fr,n and one with tiles {1}, {1, 1 + s}.{1, 1 + s, 1 + 2s}, . . ., taken

care by the fs,n. The cardinality of the set of resulting unfortunate events is

a1 · (1− 1) + a2 · (2− 1) + a3 · (3− 1) + . . . = n− (a1 + . . . an) ,
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explaining the exponent of −1. Finally, one has to match the ‘input tiles’ and the ‘output tiles’. Of

course they have to be of the same size Any of the

• a1 singletons tiles in the input domain can go to any of the a1 singleton tiles of the output domain.

More generally

• Any of the ai tiles of size i of the input domain can go to any of the ai tiles of the output domain.

The total number of possible matches is thus:

a1!a2! · · · an! .

So we explained all the ingredients in our ‘formula’.

A very small tweak gives the formula for br,s(n).

br,s(n) =
∑

C(n,s)
α · C(n,r)

α · (−1)a1+a2+...+an−na1!a2! · · · an! · 2a2+a3+...+an ,

where the sum ranges over all partitions of n 1a12a2 . . . nan , written in frequency notation.

Since br,s(n) counts the number of permutations of {1, . . . , n} such that |πi+r − πi| 6= s, now in

each component of the tiling that is not a singleton can have two different direction, ‘totally up’

and ‘totally’ down. This accounts for the extra factor 2a2+a3+...+an in our formula for br,s(n).

Did we answer the enumeration question?

Well, not quite! According to Herb Wilf’s classic essay [W] we need a polynomial time algorithm
and the number of terms in our ‘formulas’ for ar,s(n) and br,s(n) is the number of partitions of n
(in fact slightly less, but not significantly less, asymptotically speaking). According to Hardy and

Ramanujan they are about eπ
√

2n/3 of them. Nevertheless our approach worked very well up to
n = 60 and enabled us to get many more terms than they were previously in the OEIS, computed by
FIDE International Problem Solving master Vaclav Kotesovec (btw these have a nice interpretation
as ”non-attacking” fairy-chess pieces). For example to get the first 30 terms of the sequence a4,4(n),
that is https://oeis.org/A189283, it took less than three seconds on our modest laptop. Here
there are:

1, 2, 6, 24, 114, 628, 4062, 30360, 255186, 2414292, 25350954, 292378968, 3673917102, 49928069188,

729534877758, 11403682481112, 189862332575658, 3354017704180052, 62654508729565554, 1233924707891272728,

25550498290562247438, 554913370184289495780, 12612648556263898345758, 299411750583810718488216,

7409924986737790240296258, 190856850583975937020030228, 5108283222440036893650974970,

141870112250977140975169694808, 4082973503947066134710463043374, 121616802487841972048586204012740 .

For many terms of such sequences, including ar,s(n) and br,s(n) with r > 1, s > 1 and r 6= s, none

of which are yet in the OEIS see the numerous output files in the front of this article:
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https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/perms.html .

The beautiful work of Roberto Taurasu

We should mention that the case of br,r(n) for r = 2 and (larger r) has been nicely handled by

Roberto Taurasu [T]. We believe that his approach bears some similarities to ours, but ours is more

amenable to using symbolic computations efficiently.

In particular the sequence b2,2(n), currently has 35 terms listed in https://oeis.org/A110128 .

See our output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oResPerms22Va.txt

for 60 terms!

Polynomial-Time Algorithms for computing b1,s(n) for all s

As pointed out by Enrique Navarrete, the formula for a1,s(n) is very simple, and as we pointed out

already implies a very simple second-order recurrence. Dave Robbins [R] (and before him John

Riordan) explored the sequence b1,1(n) also using inclusion-exclusion but this time there are no

more (potentially) infinitely-many tiles to keep track of, because the tiles in the ‘output’ domain

are very simple, they are just sets of the form {1}, {1, 2}.{1, 2, 3}, dots, so one only needs to find

the weight-enumerator of tiles according to the weight xTotalNumberOfTiles, without recording the

individuality of the tiles. But one has to keep track of the total length of the non-singleton tiles

to one has to introduce another formal variable, let’s call it z that keeps track of that. Since each

non-singleton tile can have two directions. The details can’t be gleanded from the Maple source

code of procedures Ker1s(s, x, z, K). We believe that it can be proved that these Robbins-style

weight-enumerators of tilings can be proved to be always rational functions, and being experimental

mathematicians we just guessed them, so officially the output of the recurrences for these sequences

for b1,s(n) for s > 1 are only semi-rigorous. Thanks to Dave Robbins, our proof of Riordan’s

recurrence is fully rigorous.

Since at the end of the day once you have the Robbins-weight-enumerator Ks(x, z) for enumerating

b1,s(n), that is a rational function, one applies the umbra zn → n!, but this is just like multiplying

by e−z and integrating from 0 to ∞.
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Hence we have

Semi-Rigorous Theorem

For s ≥ 1, there almost exists a rational function of x and z (that Maple can find), let’s call it

Ks(x, z) such that
∞∑
n=0

b1,s(n)xn =

∫ ∞
0

Ks(x, z)e
−z dz .

Using the Almkvist-Zeilberger algorithm [AZ] one can find an (inhomogeneous) differential

equation with polynomial coefficients, that translates to a homogeneous linear recurrence with

polynomial coefficients for the actual sequence b1,s(n).

See the output files

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oResPermsR1.txt

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oResPermsR2.txt

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oResPermsR3.txt

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oResPermsR4.txt

for the sequence b1,1(n), b1,2(n), b1,3(n), b1,4(n), respectively.

Combinatorial, Human-Generated, Proofs of the Linear Recurrences satisfied by a1,s(n)

and b1,1(n).
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