
Theorem 1.1. Let the weight of a word v of length k be weight(v) :=
∏k

i=1 x[vi]. Then the mul-

tivariate generating function for words avoiding the consecutive pattern 12...r is 1
(1−e1+er−er+1+e2r−e2r+1+...) .

Proof. We use the cluster method as described in [NZ]. Let M be the set of marked words on

the alphabet {1, .., n}. And let the weight of a marked word w := w1w2...wk be weight(w) :=

(−1)|S| ·
∏k

i=1 x[wi] where S is the set of marks in w. Recall that weight(M) = weight(M) ·
(x1 + x2 + ...+ xn)+weight(M) · weight(C) + 1 where C is the set of all possible clusters. The

multivariate generating function for words avoiding the consecutive pattern 12...r is equal to

weight(M) = 1
1−e1−weight(C) . Since the pattern to be avoided is 12..r, the clusters can only be

of the form (a1, .., aj ; [1, r], ..) where 1 ≤ a1 < a2 < ... < aj ≤ n. So weight(C) is a summations

of multivariate monomials on x1, x2, .., xn where the exponent of each variable xi is zero or one.

Now, for any fixed monomial in weight(C), it can come from many different clusters. The number

of clusters it comes from and the coefficient of the monomial are uniquely determined by the num-

ber of variables in the monomial. For example, for r = 3, the monomial x1x3x5x6x7 can come

from the cluster (13567; [1, 3], [2, 4], [3, 5]) or (13567; [1, 3], [3, 5]). The first cluster contributes

weight (−1)3x1x3x5x6x7 whereas the second cluster contributes weight (−1)2x1x3x5x6x7. So

when summing up, they cancel each other out and there is no monomial x1x3x5x6x7 in weight(C).

So is the case with any other monomial of five variables. Therefore, let us focus on the monomial

x1x2x3..xk and figure out its coefficient. It is clear that for k < r the coefficient of x1x2x3..xk
is 0 because 12...k cannot be a cluster (it does not have a mark). And when k = r, we have

coeff(x1x2...xk) = −1 since there is only one mark. So let us move on to the case when k > r.

Claim 1: For k > r, coeff(x1x2...xk) = − coeff(x2x3...xk)− coeff(x3x4...xk)−...− coeff(xrxr+1...xk).

(Therefore coeff(x1x2...xk) = − coeff(x1x2...xk−1)− coeff(x1x2...xk−2)−...− coeff(x1x2...xk−r+1).)

This is because there are (r − 1) “categories” of clusters where x1x2...xk can come from, de-

pending on where the second mark in the cluster is. For example, if the clusters are of the

form (1..k; [1, r], [3, r + 2], ...), then the contribution from this “category” of clusters will be

(−1)· coeff(x3x4...xk), with the −1 coming from the first mark [1, r]. And if the clusters are

of the form (1..k; [1, r], [r, 2r − 1], ...), then the contribution from this “category” will be (−1)·
coeff(xrxr+1...xk). Note that if k < 2r − 1, there cannot be as many as (r − 1) "categories" be-

cause the second mark can only be at less than (r−1) places. However, in this case, we can “fake”

that there are (r − 1) places for the second mark because for k < r the coefficient of x1x2x3..xk
is 0. So the above formula still holds. For example, for the clusters associated with the word

123456, and r = 4, the first mark has to be 1234, the second mark can only be 2345 or 3456.
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But we can "fake" the second mark can also start with 4 and be 456. So coeff(x1x2x3x4x5x6) =

−coeff(x2x3x4x5x6)−coeff(x3x4x5x6)−coeff(x4x5x6)= −coeff(x2x3x4x5x6)−coeff(x3x4x5x6).

We should note here that this idea is not brand new. Readers can find similar ideas (writing

weight(C) as a summation of weight(C[v]) and weight(C[v]) as a summation of weight(C[u])

where u is a mark that overlaps with v) on page 7-9 in the the paper [NZ].

So we have: coeff(x1x2...xr) = −1; coeff(x1x2...xr+1) = (−1) · (−1) = 1; coeff(x1x2...xr+2) =

−coeff(x2x3...xr+2) − coeff(x3x4...xr+2) = −coeff(x1x2...xr+1) − coeff(x1x2...xr) = 0. Con-

tinue this process it is easy to see that x1x2...xmr (m ≥ 1) has coefficient −1 (so is any

other symmetric monomial of mr variables) and x1x2...xmr+1 has coefficient 1 (so is any other

symmetric monomial of mr+1 variables). And the monomials with other number of vari-

ables all have coefficient 0. From this argument and summing over all clusters, we conclude

weight(C) = −er+er+1−e2r+e2r+1+... and therefore weight(M) = 1
(1−e1+er−er+1+e2r−e2r+1+...) .

Theorem 1.2. Let F (x1, . . . , xn; t) be the multivariate generating function in in x1, . . . , xn,

whose coefficient of x1m1 · · ·xnmn is the (one-variable) generating function, in t, such that, for

any a, its coefficient of ta is the number of words m1 1-s, . . . , mn n with exactly a occurrences

of the pattern 1 . . . r.

Then

F (x1, . . . , xn; t)
1

1− e1 − (arer + ar+1er+1 + ...anen)
,

where ar = t − 1; ar+1 = (t − 1)ar = (t − 1)2; ar+2 = (t − 1)(ar + ar+1); ... a2r−1 =

(t−1)(ar+ar+1...+a2r−2); a2r = (t−1)(ar+1+ar+2...+a2r−1); ... an = (t−1)(an−r+1+...+an−1)

(In other words, ai is (t− 1) multiplied by the summation of previous (r− 1) aj ’s with aj = 0 if

j < r and ar = t− 1.)

Proof. This is a direct generalization from Theorem 1.1. Using the idea as described in page 11

of [NZ], we still let the set of marked words on {1, 2, ..., n} be M . However, this time we let the

weight of a marked word w of length k be weight(w) := (t − 1)|S| ·
∏k

i=1 x[wi] where S is the

set of marks in w. We still have weight(M) = weight(M) · (x1 + x2 + ... + xn)+weight(M) ·
weight(C) + 1 and the multivariate generating function for words having t consecutive patterns

12...r is weight(M) = 1
1−e1−weight(C) .

The procedure to calculate weight(C) also directly generalizes from the one in Theorem 1.1.

We simply replace (−1) by (t − 1) in various places, because the only difference is now we

assign a different weight to a marked word. For example, we have coeff(x1x2...xr) = t − 1;
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coeff(x1x2...xr+1) = (t − 1)(t − 1) = (t − 1)2; coeff(x1x2...xr+2) = (t − 1)(coeff(x2x3...xr+2) +

coeff(x3x4...xr+2)) = (t− 1)((t− 1) + (t− 1)2).

In general, we generalize Claim 1 to the following:

Claim 2: For k > r, coeff(x1x2...xk) = (t − 1) (coeff(x2x3...xk)+ coeff(x3x4...xk) + ...+

coeff(xrxr+1...xk)). (Therefore coeff(x1x2...xk) = (t−1) (coeff(x1x2...xk−1)+ coeff(x1x2...xk−2)+

...+ coeff(x1x2...xk−r+1).)

The proof of Claim 2 directly generalizes directly from the proof of Claim 1 because the only

difference is in the weight of a marked word. Now one mark contributes a factor of (t−1) instead

of −1 to the weight of a marked word.

Theorem 1.2. then follows from this claim straightforwardly.

Theorem 2. The multi-variate cluster generating function for words on the alphabet {1, 2, ..., n}
that avoid {[1, 2, ..., n], [2, 3, ..., n, 1], ..., [n, 1, 2, ..., n− 1]} is

∏n
i=1 xi(−n+

∑n
j=1 xj)

1−
∏n

k=1 xk
.

Proof. We rewrite the generating function as x1x2...xn(−n+ x1 + x2 + ...+ xn)(1 + x1x2...xn +

x21x
2
2...x

2
n + ...). And we will use the case n = 3 to illustrate the idea.

First of all, no matter how long the cluster is, it will always be of the form {a1a2a3a1a2a3a1...}
where a1a2a3 ∈ {[1, 2, 3], [2, 3, 1], [3, 1, 2]}. If we start with 123, for example, in our cluster, and

say, our cluster has 7 letters in total, then it has to be 1231231. Why is it so? That is because,

any two adjacent letters must belong to one mark (by the definition of cluster). Therefore the

letters proceed in the "clockwise" fashion. That is, after 3 there must be a 1, after 1 there must

be a 2 and after 2 there must be a 3. Having observed what the clusters look like, now let us

figure out what are the coefficients for the clusters.

Say our cluster is of length 3m (m is a positive integer), and it starts with 123. From the ar-

gument above, we know it is 123123...123 (123 repeated m times). We use induction to show

that the coefficient of corresponding term in the generating function xm1 xm2 xm3 is −1. If m = 1,

obviously we just have one mark, so the coefficient of x1x2x3 is −1. Now look at our cluster

123123...123 (123 repeated m times). There could be three potential marks overlapping the first

123. They are 123, 231 and 312. Of the marks 231, 312, we have to choose at least one of them

(we cannot choose neither of them because then we will not have a cluster). If we just choose

one of them to be a mark, the contribution to the coefficient of xm1 xm2 xm3 will be (+1) multiplied
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by the coefficient of xm−11 xm−12 xm−13 . If we choose both of them as marks, the contribution will

be (−1) multiplied by the coefficient of xm−11 xm−12 xm−13 . So in total, the contribution will be

(
(
2
1

)
−
(
2
2

)
) multiplied by the coefficient of xm−11 xm−12 xm−13 (which is -1 by induction hypothesis).

So we get −1 as the contribution from 123123...123 to coefficient of xm1 xm2 xm3 . Since the other

length 3m clusters are 231231...231 and 312312...312 (each contributing −1 to the coefficient),

we get −3 as the coefficient of xm1 xm2 xm3 . (This works the same way for the general case, because

of the fact that
(
k
1

)
−
(
k
2

)
+
(
k
3

)
+ ..+ (−1)k+1

(
k
k

)
= 1 for any positive integer k).

If our cluster is of length 3m + 1 and say it starts with 123, we know it is 123123...1231 (123

repeated m times). We can again use induction to show that the coefficient of xm+1
1 xm2 ...xmn is

+1. The base case 1231 now contributes +1 to the coefficient of x21x2x3. Also note that the

only cluster that xm+1
1 xm2 ...xmn comes from is 123123...1231, so we have one case instead of 3. By

similar induction argument as above we see that the coefficient of xm+1
1 xm2 xm3 is +1. And so is

the coefficient of xm1 xm+1
2 xm3 and xm1 xm2 xm+1

3 .

Now another possibility is our cluster is of length 3m+ 2. Again say it starts with 123, then it

must be 123123...12312 (123 repeatedm times). Why do we not see any xm+2
1 xm2 ...xmn term in the

generating function? This is because the base case 12312 contributes 0 to the coefficient x21x22x3
(which can only come from 12312). In general, the contribution from 123..n12..r (1 < r < n)

to the coefficient x21x
2
2...x

2
rxr+1...xn (which can only come from 123..n12..r) will be 0. This is

because we can choose any number of marks from {23..n1, 34..n12, ..., r(r + 1)...(r − 2)(r − 1)}
and −

(
k
0

)
+
(
k
1

)
−
(
k
2

)
+
(
k
3

)
+ ..+ (−1)k+1

(
k
k

)
= 0 for any positive integer k).

Gathering the cases above, we get the generating function stated in Theorem 2.

Theorem 3. The multi-variate cluster generating function for words on alphabet {1, 2, ..., n}
avoiding any pattern in {[2, 3, 1], [3, 1, 2], [2, 1, 3], [1, 3, 2]} has the same number of terms (unlike

pattern [1,2,3] and [3,2,1], the generating functions for these patterns are not symmetric).

Proof. This is because of the simple fact that any two patterns of {[2, 3, 1], [3, 1, 2], [2, 1, 3], [1, 3, 2]}
can be transformed to one another by the operation of reversion or taking complement. And

we can apply the same operation to the cluster we are looking at to establish a bijection. For

example, 231 is the complement of 213 (meaning 2 goes to 2, 1 goes to 3, 3 goes to 1). If we are

looking at clusters on {1, 2, 3, 4} related to pattern 213 and 231 respectively, the cluster 21324

translates to cluster 34231. In other words there is a bijection from the clusters related to the

pattern 213 and the clusters related to the pattern 231.


