A Symbolic Computation Approach to a Problem Involving Multivariate Poisson Distributions
 (Draft, do not distribute!)*

Eduardo D. Sontag and Doron Zeilberger
Department of Mathematics
Rutgers University
Hill Center-Busch Campus
110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
[sontag,zeilberg] at math dot rutgers dot edu

May 5, 2009

1 Introduction

Eduardo, please write it.
***** important to decide: do we really start by emphasizing chemistry, or do we first state the purely mathematical problem (including Prussian officers and email messages. well, no Prussian officers, but we can make a good story with text messages, emails, and so on)? Then the chemistry would be a self-contained second part. DZ's reply: Yes, good idea! Keep the Chemistry to the second part, but mention it in the still-to-be-written abstart.

2 The Problem

Suppose that we have n independent Poisson random variables, $X_{j}(j=1 \ldots n)$, with parameters λ_{j} respectively. In other words

$$
\begin{equation*}
\operatorname{Pr}\left(X_{1}=k_{1}, X_{2}=k_{2}, \ldots, X_{n}=k_{n}\right)=e^{-\left(\lambda_{1}+\cdots+\lambda_{n}\right)} \frac{\lambda_{1}^{k_{1}}}{k_{1}!} \frac{\lambda_{2}^{k_{2}}}{k_{2}!} \ldots \frac{\lambda_{n}^{k_{n}}}{k_{n}!} . \tag{1}
\end{equation*}
$$

[^0]Suppose that we can't observe the X_{j} 's directly, but only a certain number, m, of linear combinations of them:

$$
Y_{i}=\sum_{j=1}^{n} a_{i j} X_{j} \quad, \quad(i=1, \ldots, m)
$$

where $\left(a_{i j}\right)$ is a certain $m \times n$ matrix with non-negative coefficients.
We are interested in the following questions:

1. Can one compute (fast!), for any given vector $\left(b_{1}, \ldots, b_{m}\right)$ (possibly with large coordinates), the probability

$$
F\left(b_{1}, \ldots, b_{m}\right):=\operatorname{Pr}\left(Y_{1}=b_{1}, \ldots, Y_{m}=b_{m}\right) .
$$

2. Can one compute (fast!), for any given vector $\left(b_{1}, \ldots, b_{m}\right)$, (possibly with large coordinates) the conditional expectation

$$
G_{j}\left(b_{1}, \ldots, b_{m}\right):=E\left[X_{j} \mid Y_{1}=b_{1}, \ldots, Y_{m}=b_{m}\right] \quad, \quad(1 \leq j \leq n) .
$$

3. More generally, can one compute (fast!), the higher moments

$$
G_{j}^{(r)}\left(b_{1}, \ldots, b_{m}\right):=E\left[X_{j}^{r} \mid Y_{1}=b_{1}, \ldots, Y_{m}=b_{m}\right] \quad, \quad(r \geq 2)
$$

that would immediately allow us to compute the moments about the mean. Can we compute (fast!) mixed moments, in particular the covariances?
***** EDS will fill-in: As trivial example, consider the case in which there is one column... multinomial $* * * * *$
***** actually, we are also VERY interested in covariances, so we need JOINT moments too. Doron: could you write that up easily, or should we say something like "one can also easily find them" for now, if we want to be done soon? ${ }^{* * * * *}$

3 The generating function

Fix a matrix $A=\left(a_{i j}\right)(1 \leq i \leq m, 1 \leq j \leq n)$, once and for all. Let

$$
F_{0}\left(b_{1}, \ldots, b_{m}\right)=\sum_{\substack{k_{1}, \ldots, k_{n} \geq 0 \\ a_{11} k_{1}+\cdots+a_{1 n} k_{n}=b_{1}, \ldots, a_{m} k_{1}+\cdots+a_{m n} k_{n}=b_{m}}} \frac{\lambda_{1}^{k_{1}}}{k_{1}!} \frac{\lambda_{2}^{k_{2}}}{k_{2}!} \cdots \frac{\lambda_{n}^{k_{n}}}{k_{n}!}
$$

(value is zero if the sum is empty), so that

$$
F\left(b_{1}, \ldots, b_{m}\right)=e^{-\left(\lambda_{1}+\cdots+\lambda_{n}\right)} F_{0}\left(b_{1}, \ldots, b_{m}\right) .
$$

Let f_{0} be the (multivariable) generating function of F_{0}, in other words

$$
f_{0}\left(z_{1}, \ldots, z_{m}\right)=\sum_{b_{1} \geq 0, \ldots, b_{m} \geq 0} F_{0}\left(b_{1}, \ldots, b_{m}\right) z_{1}^{b_{1}} \cdots z_{m}^{b_{m}}
$$

Our quantity of interest, $F_{0}\left(b_{1}, \ldots, b_{m}\right)$, is the coefficient of $z_{1}^{b_{1}} \cdots z_{m}^{b_{m}}$ in the multivariable Taylor expansion about the origin of $f_{0}\left(z_{1}, \ldots, z_{m}\right)$.
We have:

$$
f_{0}\left(z_{1}, \ldots, z_{m}\right)=\sum_{b_{1} \geq 0, \ldots, b_{m} \geq 0}\left(\sum_{\substack{k_{1}, \ldots, k_{n} \geq 0 \\ a_{11} k_{1}+\cdots+a_{1 n} k_{n}=b_{1}, \ldots, a_{m} k_{1}+\cdots+a_{m n} k_{n}=b_{m}}} \frac{\lambda_{1}^{k_{1}}}{k_{1}!} \frac{\lambda_{2}^{k_{2}}}{k_{2}!} \cdots \frac{\lambda_{n}^{k_{n}}}{k_{n}!}\right) z_{1}^{b_{1}} \cdots z_{m}^{b_{m}} .
$$

By changing the order of summation, this equals

$$
\begin{aligned}
& \quad \sum_{k_{1} \geq 0, \ldots, k_{n} \geq 0} \frac{\lambda_{1}^{k_{1}}}{k_{1}!} \frac{\lambda_{2}^{k_{2}}}{k_{2}!} \cdots \frac{\lambda_{n}^{k_{n}}}{k_{n}!} z_{1}^{a_{11} k_{1}+\cdots+a_{1 n} k_{n}} \cdots z_{m}^{a_{m 1} k_{1}+\cdots+a_{m n} k_{n}} \\
& \quad=\sum_{k_{1} \geq 0, \ldots, k_{n} \geq 0} \frac{\left(\lambda_{1} z_{1}^{a_{11}} z_{2}^{a_{21}} \cdots z_{m}^{a_{m 1}}\right)^{k_{1}}}{k_{1}!} \cdots \frac{\left(\lambda_{n} z_{1}^{a_{1 n}} z_{2}^{a_{2 n}} \cdots z_{m}^{a_{m n}}\right)^{k_{n}}}{k_{n}!} \\
& \quad=\left(\sum_{k_{1} \geq 0} \frac{\left(\lambda_{1} z_{1}^{a_{11}} z_{2}^{a_{21}} \cdots z_{m}^{a_{m 1}}\right)^{k_{1}}}{k_{1}!}\right) \cdots\left(\sum_{k_{n} \geq 0} \frac{\left(\lambda_{n} z_{1}^{a_{1 n}} z_{2}^{a_{2 n}} \cdots z_{m}^{a_{m n}}\right)^{k_{n}}}{k_{n}!}\right) \\
& \quad=\exp \left(\lambda_{1} z_{1}^{a_{11}} z_{2}^{\left.a_{21} \cdots z_{m}^{a_{m 1}}\right) \cdots \exp \left(\lambda_{n} z_{1}^{a_{1 n}} z_{2}^{a_{2 n}} \cdots z_{m}^{a_{m n}}\right)}\right. \\
& \quad=\exp \left(\lambda_{1} z_{1}^{a_{11}} z_{2}^{a_{21}} \cdots z_{m}^{a_{m 1}}+\cdots+\lambda_{n} z_{1}^{a_{1 n}} z_{2}^{a_{2 n}} \cdots z_{m}^{a_{m n}}\right) .
\end{aligned}
$$

We have just derived

Theorem 1:

$$
f_{0}\left(z_{1}, \ldots, z_{m}\right)=\exp \left(\sum_{j=1}^{n} \lambda_{j} \prod_{i=1}^{m} z_{i}^{a_{i j}}\right)
$$

The conditional probability

$$
\operatorname{Pr}\left(X_{1}=k_{1}, X_{2}=k_{2}, \ldots, X_{n}=k_{n} \mid Y_{1}=b_{1}, \ldots, Y_{m}=b_{m}\right)
$$

is the same as the expression in (1) divided by $F(b)$, provided that $\sum_{j=1}^{n} a_{i j} k_{j}=b_{i}$ for all i, and is zero otherwise. Recall that the r th factorial moment of a random variable $W, E\left[W^{(r)}\right]$, is, by definition, the expectation of $W!/(W-r)$!. We are interested in the conditional factorial moments of X_{j} given $Y=b$, which we will denote as $E\left[X_{j}^{(r)} \mid Y\right]$. By definition, $E\left[X_{j}^{(r)} \mid Y\right]$ the following expression and divided by $F_{0}(b)$:

$$
\begin{equation*}
\sum_{\substack{k_{1}, \ldots, k_{n} \geq 0 \\ a_{11} k_{1}+\cdots+a_{1 n} k_{n}=b_{1}, \ldots, a_{m} 1 k_{1}+\cdots+a_{m n} k_{n}=b_{m}}} k_{j}\left(k_{j}-1\right) \ldots\left(k_{j}-r+1\right) \frac{\lambda_{1}^{k_{1}}}{k_{1}!} \frac{\lambda_{2}^{k_{2}}}{k_{2}!} \cdots \frac{\lambda_{n}^{k_{n}}}{k_{n}!} . \tag{2}
\end{equation*}
$$

Now, expression (2) is the same as the result of applying the operator $\lambda_{j}^{r}\left(\frac{\partial}{\partial \lambda_{j}}\right)^{r}$ to $F_{0}\left(b_{1}, \ldots, b_{m}\right)$ when viewing the λ 's as variables and not as constants. On the other hand,

$$
\lambda_{j}^{r}\left(\frac{\partial}{\partial \lambda_{j}}\right)^{r} f_{0}\left(z_{1}, \ldots, z_{m}\right)=\sum_{b_{1} \geq 0, \ldots, b_{m} \geq 0} \lambda_{j}^{r}\left(\frac{\partial}{\partial \lambda_{j}}\right)^{r} F_{0}\left(b_{1}, \ldots, b_{m}\right) z_{1}^{b_{1}} \cdots z_{m}^{b_{m}}
$$

and therefore expression (2) is the same as the coefficient of $z_{1}^{b_{1}} \cdots z_{m}^{b_{m}}$ in $\lambda_{j}^{r}\left(\frac{\partial}{\partial \lambda_{j}}\right)^{r} f_{0}\left(z_{1}, \ldots, z_{m}\right)$ Since, as formal power series, we have the representation in Theorem 1. we conclude that expression (2) is the same as the coefficient of $z_{1}^{b_{1}} \cdots z_{m}^{b_{m}}$ in $\left(\prod_{i=1}^{m} z_{i}^{a_{i j}}\right)^{r} f_{0}(z)$, which is the same as $F\left(b_{1}-r a_{1 j}, b_{2}-r a_{2 j}, \ldots, b_{m}-r a_{m j}\right)$ when all $b_{i}-r a_{i j} \geq 0$ and zero otherwise. In conclusion, $E\left[X_{j}^{(r)} \mid Y\right]$ equals $F_{0}\left(b_{1}-r a_{1 j}, b_{2}-r a_{2 j}, \ldots, b_{m}-r a_{m j}\right)$ divided by $F_{0}(b)$. We have proved:
Theorem 2: The conditional factorial moments $E\left[X_{j}^{(r)} \mid Y\right]$ are given in terms of the $F_{0}\left(b_{1}, \ldots, b_{m}\right)$ by

$$
\lambda_{j}^{r} \cdot \frac{F_{0}\left(b_{1}-r a_{1 j}, b_{2}-r a_{2 j}, \ldots, b_{m}-r a_{m j}\right)}{F_{0}\left(b_{1}, \ldots, b_{m}\right)}
$$

when all $b_{i}-r a_{i j} \geq 0$ and zero otherwise.
So everything depends on a fast computation of the coefficients $F_{0}\left(b_{1}, \ldots, b_{m}\right)$, of $f_{0}\left(z_{1}, \ldots, z_{m}\right)$.
By taking mixed partial derivatives, we can easily derive analogous expressions for mixed moments, in particular, the covariances.

4 Recurrences

From now on, let's assume that the entries of $A,\left(a_{i j}\right)$, are non-negative integers. In that case, we can write
$* * * * *$ next line is not quite right unless the exponentials are taken into account in the definition of Q. Or, equivalently, we can compute f_{0}. DZ: Indeed we should stick to f_{0}.

$$
f_{0}(z)=\exp \left(Q\left(z_{1}, \ldots, z_{m}\right)\right)
$$

where $Q\left(z_{1}, \ldots, z_{m}\right)$ is the polynomial

$$
Q\left(z_{1}, \ldots, z_{m}\right):=\sum_{j=1}^{n} \lambda_{j} \prod_{i=1}^{m} z_{i}^{a_{i j}}
$$

By Cauchy's theorem, we can express $F\left(b_{1}, \ldots, b_{m}\right)$ as a multi-contour integral:

$$
F\left(b_{1}, \ldots, b_{m}\right)=\left(\frac{1}{2 \pi i}\right)^{m} \int_{\left|z_{1}\right|=c} \ldots \int_{\left|z_{m}\right|=c} \frac{\exp \left(Q\left(z_{1}, \ldots, z_{m}\right)\right)}{z_{1}^{b_{1}+1} \ldots z_{m}^{b_{m}+1}} d z_{1} \ldots d z_{m}
$$

By the celebrated Wilf-Zeilberger theory ([WZ]), $F\left(b_{1}, \ldots, b_{m}\right)$ satisfies pure linear recurrences with polynomial coefficients in each of its arguments. This means that for each i between 1 and m, there exists a positive integer R_{i} (the order) and polynomials $P_{r}^{(i)}\left(b_{1}, \ldots, b_{m}\right)$ $\left(0 \leq r \leq R_{i}\right)$ such that the following holds, for all $\left(b_{1}, \ldots, b_{m}\right)$:

$$
\sum_{r=0}^{R_{i}} P_{r}^{(i)}\left(b_{1}, \ldots, b_{m}\right) F\left(b_{1}, \ldots, b_{i-1}, b_{i}+r, b_{i+1}, \ldots, b_{m}\right)=0
$$

Once these recurrences are known, one can compute $F\left(b_{1}, \ldots, b_{m}\right)$ in time linear in $b_{1}+\cdots+b_{m}$ and with constant memory allocation (one only needs to remember, at each stage, a constant number of values).

***** add a warning about zeros of coefs of recursion? DZ: OK, here goes

In rare cases, the leading term of the recurrence would vanish, in which case, we would encounter a (discrete) "singularity", and would not be able to go on, since we would have to divide by 0 , but in that case one can show that there is an alternative route, using another order of applying the recurrences.
The Apagodu-Zeilberger[ApZ] multi-variable extension of the Almkvist-Zeilberger[AlZ] algorithm can find such recurrences explicitly. Unfortunately, for matrices A with more than three rows, the time taken to find such recurrences is prohibitive, but many matrices of interest have two or three rows.

5 Two-Rowed matrices

If the matrix A only has two rows, and the entries are only $\{0,1\}$, then one can express $F\left(b_{1}, b_{2}\right)$ as a single sum. Indeed, let

- c_{01} be the sum of the λ_{j} 's for which $a_{1, j}=0, a_{2, j}=1$,
- c_{01} be the sum of the λ_{j} 's for which $a_{1, j}=1, a_{2, j}=0$,
- c_{01} be the sum of the λ_{j} 's for which $a_{1, j}=1, a_{2, j}=1$.

Then, we have

$$
Q(z)=c_{01} z_{1}+c_{10} z_{2}+c_{11} z_{1} z_{2}
$$

and so

$$
\begin{aligned}
f_{0}\left(z_{1}, z_{2}\right) & =e^{Q(z)}=\sum_{k=0}^{\infty} \frac{Q(z)^{k}}{k!} \\
& =\sum_{\alpha \geq 0, \beta \geq 0, \gamma \geq 0} \frac{\left(c_{01} z_{1}\right)^{\alpha}\left(c_{10} z_{2}\right)^{\beta}\left(c_{11} z_{1} z_{2}\right)^{\gamma}}{\alpha!\beta!\gamma!} \\
& =\sum_{\alpha \geq 0, \beta \geq 0, \gamma \geq 0} \frac{c_{01}^{\alpha} c_{10}^{\beta} c_{11}^{\gamma} z_{1}^{\alpha+\gamma} z_{2}^{\beta+\gamma}}{\alpha!\beta!\gamma!} .
\end{aligned}
$$

To get $F_{0}\left(b_{1}, b_{2}\right)$, we must extract the coefficient of $z_{1}^{b_{1}} z_{2}^{b_{2}}$ which entails $\alpha=b_{1}-\gamma, \beta=b_{2}-\gamma$, and we have the single-sum binomial coefficient (hypergeometric) sum (replacing γ by k)

$$
F_{0}\left(b_{1}, b_{2}\right)=\sum_{k=0}^{\min \left(b_{1}, b_{2}\right)} \frac{c_{11}^{k} c_{01}^{b_{1}-k} c_{10}^{b_{2}-k}}{k!\left(b_{1}-k\right)!\left(b_{2}-k\right)!} .
$$

Using the Zeilberger Algorithm ([Z, PWZ]), we get the following linear recurrence:

$$
\begin{gathered}
\left(c_{10} b_{1}^{2}+4 c_{10}-2 c_{10} b_{2}+4 c_{10} b_{1}-c_{10} b_{1} b_{2}\right) F_{0}\left(b_{1}+2, b_{2}\right)+ \\
\left(-c_{11} b_{1}-c_{11}+b_{2} c_{11}+b_{2} c_{10} c_{01}-2 b_{1} c_{10} c_{01}-3 c_{01} c_{10}\right) F_{0}\left(b_{1}+1, b_{2}\right)+\left(c_{11} c_{10}+c_{01} c_{10}^{2}\right) F_{0}\left(b_{1}, b_{2}\right)=0
\end{gathered}
$$

6 The Maple package MVPoisson

All this is implemented in the Maple package MVPoisson accompanying this article. It is available from the webpage of this article
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/mvp.html ,
where one can also find sample input and output.
***** paper: I looked at the sample outputs on the web, and saw statements such as:
"This seems to be asymptotically etc etc..."
Can you please include a sentence explaining how this fit is done by the software? Or did you do this by hand? Is there any reason to expect $\Omega(n)=c n^{p}$? ${ }^{* * * * *}$
***** I'd like to download all at once all the files linked from
http://www.math.rutgers.edu/ ${ }^{\text {zeilberg/mamarim/mamarimhtml/mvp.html, but }}$ for some strange reason my "wget" is failing to work recursively (you must have a funny directory structure). Is it possible to get a tar file?

References

[AlZ] G. Almkvist and D. Zeilberger, The method of differentiating under the integral sign, J. Symbolic Computation 10(1990), 571-591.
[ApZ] M. Apagodu and D. Zeilberger, Multi-Variable Zeilberger and Almkvist-Zeilberger Algorithms and the Sharpening of Wilf-Zeilberger Theory, Adv. Appl. Math. 37 (2006)(Special Regev issue), 139-152
[PWZ] M. Petkovsek, H.S. Wilf and D. Zeilberger, $A=B$, AK Peters, Wellesley, (1996). [available on-line from the authors' websites.]
[WZ] H.S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and "q") multisum/integral identities, Invent. Math. 108 (1992), 575-633.
[Z] D. Zeilberger, The method of creative telescoping, J. Symbolic Computat. 11, 195-204 (1991).

[^0]: *Accompanied by Maple package MVPoisson downloadable from
 http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/mvp.html

