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Abstract

Multivariate Poisson random variables subject to linear integer constraints arise in several ap-
plication areas, such as queuing and biomolecular networks. This note shows how to compute
conditional statistics in this context, by employing Wilf-Zeilberger Theory and associated al-
gorithms. A symbolic computation package has been developed and is made freely available.
A discussion of motivating biomolecular problems is also provided.

1 Introduction

In application areas such as queuing and biomolecular networks, one is often interested in the
study of independent Poisson random variables subject to side information represented by linear
integer constraints. We show how to reduce the computation of conditional statistics for this
problem to the evaluation of coefficients of generating functions. These coefficients can, in turn,
be computed using Wilf-Zeilberger (WZ) theory. We discuss this reduction, and make available
a symbolic computation package developed for that purpose.

We next provide a formulation of the problem, and briefly indicate its motivations. In Section 2,
we explain the reduction to exponential type generating functions, and in Section 3 we discuss
the fact that recurrences can be obtained for their coefficients. Section 4 discusses the special
case of just two side constraints, which is considerably simpler. Section 5 illustrates the use of
the symbolic package through a number of examples, all of which arise from the biomolecular
networks discussed in Section 6. An Appendix includes a proof of the basic representation
theorem which enables application of this techniques to certain reaction networks.

Suppose that we have n independent Poisson random variables, Xj (j = 1 . . . n), with parame-
ters λj respectively. In other words

Pr (X1 = k1, X2 = k2, . . . , Xn = kn) = e−(λ1+...+λn)λ
k1
1

k1!

λk22

k2!
. . .

λknn
kn!

. (1)

∗Accompanied by Maple package MVPoisson downloadable from
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/mvp.html
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Suppose that we can’t observe the Xj ’s directly, but only a certain number, m, of linear com-
binations of them:

Yi =

n∑
j=1

aijXj , (i = 1, . . . ,m) ,

where A = (aij) is a certain m× n matrix with non-negative coefficients.

We are interested in the following questions:

1. Can one compute (fast!), for any given vector (b1, . . . , bm) (possibly with large coordi-
nates), the probability

F (b1, . . . , bm) := Pr (Y1 = b1, . . . , Ym = bm) .

2. Can one compute (fast!), for any given vector (b1, . . . , bm), (possibly with large coordi-
nates) the conditional expectation

Gj(b1, . . . , bm) := E[Xj

∣∣ Y1 = b1, . . . , Ym = bm] , (1 ≤ j ≤ n).

3. More generally, can one compute (fast!), the higher moments

G
(r)
j (b1, . . . , bm) := E[Xr

j

∣∣ Y1 = b1, . . . , Ym = bm] , (r ≥ 2) ,

that would immediately allow us to compute the moments about the mean. Can we
compute (fast!) mixed moments, in particular the covariances?

For example, suppose thatXi is Poisson with parameter λi, i = 1, 2, X1 andX2 are independent,
and A = (1 1). Thus, Y = X1 + X2 is Poisson with parameter λ1 + λ2. Fix a non-negative
integer b. The probability that X1 = k given that Y = X1 +X2 = b is:

e−(λ1+λ2)λ
k
1

k!

λb−k2

(b− k)!

/
e−(λ1+λ2) (λ1 + λ2)b

b!

which equals (
b

k

)
pk(1− p)b−k

with p = λ1
λ1+λ2

. It follows that (X1|Y = b) is a binomial random variable B(b, p), and similarly
(X2|Y = b) is a binomial random variable B(b, 1− p). Statistics for binomial variables (means,
variances, and all moments) are well-known and easy to compute. On the other hand, for more
complicated linear constraints, and especially if more than one such constraint is imposed,
statistics become considerably harder to obtain.

A simple example of where this type of problem might arise is as follows. Suppose that the
random variables Xi count the number of calls placed, during a typical time period, to an
international service center and originating from a specific country or geographical area and in
a specific customer language. For example, X1 may represent the number of English-speaking
callers from the USA, X2 the number of Spanish-speaking callers from the USA, X3 the number
of English-speaking callers from Latin America, X4 the number of Spanish-speaking callers from
Latin America, X5 the number of English-speaking callers from the UK, and X6 the number
of Spanish-speaking callers from the UK. It is natural to assume that each of the random
variables is Poisson-distributed. Now, suppose that we want to know what are the statistics
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of the variable X1, for example, the variance in the number of English-speaking callers from
the USA, subject to the additional information that the total number of Spanish-language calls
received was 100 and that the number of calls received from the US was 50. That is, we are
interested in the statistics of X1 conditioned on Y1 = 100, Y2 = 50 with Y1 = X2 + X4 + X6

and Y2 = X1 + X2. (More interestingly, one might have mixed information, represented by
more general linear combinations.) We were originally motivated in this work by applications
in molecular biology; we defer to Section 6 a detailed discussion and examples.

2 The generating function

Fix a matrix A = (aij) (1 ≤ i ≤ m, 1 ≤ j ≤ n), once and for all. Let

F0(b1, . . . , bm) =
∑

k1,...,kn≥0
a11k1+...+a1nkn=b1,...,am1k1+...+amnkn=bm

λk11

k1!

λk22

k2!
. . .

λknn
kn!

(value is zero if the sum is empty). Thus, our focus will be on computing F0, from which we
can easily obtain F , since

F (b1, . . . , bm) = e−(λ1+...+λn)F0(b1, . . . , bm) .

Let f0 be the (multivariable) generating function of F0, in other words

f0(z1, . . . , zm) =
∑

b1≥0,...,bm≥0

F0(b1, . . . , bm)zb11 . . . zbmm .

Our quantity of interest, F0(b1, . . . , bm), is the coefficient of zb11 . . . zbmm in the multivariable
Taylor expansion about the origin of f0(z1, . . . , zm).

We have:

f0(z1, . . . , zm) =
∑

b1≥0,...,bm≥0

 ∑
k1,...,kn≥0

a11k1+...+a1nkn=b1,...,am1k1+...+amnkn=bm

λk11

k1!

λk22

k2!
. . .

λknn
kn!

 zb11 . . . zbmm .

By changing the order of summation, this equals

∑
k1≥0,...,kn≥0

λk11

k1!

λk22

k2!
. . .

λknn
kn!

za11k1+...+a1nkn
1 . . . zam1k1+...+amnkn

m

=
∑

k1≥0,...,kn≥0

(λ1z
a11
1 za212 . . . zam1

m )k1

k1!
. . .

(λnz
a1n
1 za2n2 . . . zamn

m )kn

kn!

=

∑
k1≥0

(λ1z
a11
1 za212 . . . zam1

m )k1

k1!

 . . .

∑
kn≥0

(λnz
a1n
1 za2n2 . . . zamn

m )kn

kn!


= exp(λ1z

a11
1 za212 . . . zam1

m ) . . . exp(λnz
a1n
1 za2n2 . . . zamn

m )

= exp (λ1z
a11
1 za212 . . . zam1

m + . . .+ λnz
a1n
1 za2n2 . . . zamn

m ) .

We have just derived
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Theorem 1:

f0(z1, . . . , zm) = exp

 n∑
j=1

λj

m∏
i=1

z
aij
i

 .

The conditional probability

Pr
(
X1 = k1, X2 = k2, . . . , Xn = kn

∣∣ Y1 = b1, . . . , Ym = bm
)

is the same as the expression in (1) divided by F (b), provided that
∑n

j=1 aijkj = bi for all i,

and is zero otherwise. Recall that the rth factorial moment of a random variable W , E[W (r)],
is, by definition, the expectation of W !/(W − r)!. We are interested in the conditional factorial

moments of Xj given Y = b, which we will denote as E[X
(r)
j

∣∣Y ]. By definition, E[X
(r)
j

∣∣Y ] is
the following expression divided by F0(b):

∑
k1,...,kn≥0

a11k1+...+a1nkn=b1,...,am1k1+...+amnkn=bm

kj(kj − 1) . . . (kj − r + 1)
λk11

k1!

λk22

k2!
. . .

λknn
kn!

. (2)

Now, expression (2) is the same as the result of applying the operator λrj(
∂
∂λj

)r to F0(b1, . . . , bm)

when viewing the λ’s as variables and not as constants. On the other hand,

λrj(
∂

∂λj
)rf0(z1, . . . , zm) =

∑
b1≥0,...,bm≥0

λrj(
∂

∂λj
)rF0(b1, . . . , bm)zb11 . . . zbmm

and therefore expression (2) is the same as the coefficient of zb11 . . . zbmm in λrj(
∂
∂λj

)rf0(z1, . . . , zm).

Since, as formal power series, we have the representation in Theorem 1, we conclude that
expression (2) is the same as the coefficient of zb11 . . . zbmm in (

∏m
i=1 z

aij
i )rf0(z), which is the same

as F (b1−ra1j , b2−ra2j , . . . , bm−ramj) when all bi−raij ≥ 0 and zero otherwise. In conclusion,

E[X
(r)
j

∣∣Y ] equals λrj ·F0(b1− ra1j , b2− ra2j , . . . , bm− ramj) divided by F0(b). We have proved:

Theorem 2: The conditional factorial moments E[X
(r)
j

∣∣Y ] are given in terms of the F0(b1, . . . , bm)
by

λrj ·
F0(b1 − ra1j , b2 − ra2j , . . . , bm − ramj)

F0(b1, . . . , bm)

when all bi − raij ≥ 0 and zero otherwise.

So everything depends on a fast computation of the coefficients F0(b1, . . . , bm), of f0(z1, . . . , zm).

By taking mixed partial derivatives, we can easily derive analogous expressions for mixed mo-
ments, in particular, the covariances.

3 Recurrences

From now on, let’s assume that the entries of A, (aij), are non-negative integers. In that case,
we can write

f0(z) = exp(Q(z1, . . . , zm)) ,

where Q(z1, . . . , zm) is the polynomial

Q(z1, . . . , zm) :=

n∑
j=1

λj

m∏
i=1

z
aij
i .
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By Cauchy’s theorem, we can express F (b1, . . . , bm) as a multi-contour integral:

F (b1, . . . , bm) =

(
1

2πi

)m ∫
|z1|=c

. . .

∫
|zm|=c

exp(Q(z1, . . . , zm))

zb1+1
1 . . . zbm+1

m

dz1 . . . dzm .

By the celebrated Wilf-Zeilberger theory ([16]), F (b1, . . . , bm) satisfies pure linear recur-
rences with polynomial coefficients in each of its arguments. This means that for each i

between 1 and m, there exists a positive integer Ri (the order) and polynomials P
(i)
r (b1, . . . , bm)

(0 ≤ r ≤ Ri) such that the following holds, for all (b1, . . . , bm):

Ri∑
r=0

P (i)
r (b1, . . . , bm)F (b1, . . . , bi−1, bi + r, bi+1, . . . , bm) = 0 .

Once these recurrences are known, one can compute F (b1, . . . , bm) in time linear in b1 + . . .+bm
and with constant memory allocation (one only needs to remember, at each stage, a constant
number of values).

In rare cases, the leading term of the recurrence would vanish, in which case, we would encounter
a (discrete) “singularity”, and would not be able to go on, since we would have to divide by 0,
but in that case one can show that there is an alternative route, using another order of applying
the recurrences.

The Apagodu-Zeilberger multi-variable extension[3] of the Almkvist-Zeilberger algorithm[1]
can find such recurrences explicitly. Unfortunately, for matrices A with more than three rows,
the time taken to find such recurrences is prohibitive, but many matrices of interest have two
or three rows.

4 Two-Rowed matrices

If the matrix A only has two rows, and its entries are only {0, 1}, then one can express F (b1, b2)
as a single sum. Indeed, let

• c10 be the sum of the λj ’s for which a1,j = 0, a2,j = 1,

• c01 be the sum of the λj ’s for which a1,j = 1, a2,j = 0,

• c11 be the sum of the λj ’s for which a1,j = 1, a2,j = 1.

Then, we have
Q(z) = c01z1 + c10z2 + c11z1z2,

and so

f0(z1, z2) = eQ(z) =
∞∑
k=0

Q(z)k

k!

=
∑

α≥0,β≥0,γ≥0

(c01z1)α(c10z2)β(c11z1z2)γ

α!β!γ!

=
∑

α≥0,β≥0,γ≥0

cα01c
β
10c

γ
11z

α+γ
1 zβ+γ

2

α!β!γ!
.
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To get F0(b1, b2), we must extract the coefficient of zb11 z
b2
2 which entails α = b1 − γ, β = b2 − γ,

and we have the single-sum binomial coefficient (hypergeometric) sum (replacing γ by k)

F0(b1, b2) =

min(b1,b2)∑
k=0

ck11c
b1−k
01 cb2−k10

k!(b1 − k)!(b2 − k)!
.

Using the Zeilberger Algorithm ([17, 13]) , we get the following linear recurrence:

(c10b
2
1 + 4c10 − 2c10b2 + 4c10b1 − c10b1b2)F0(b1 + 2, b2)+

(−c11b1−c11+b2c11+b2c10c01−2b1c10c01−3c01c10)F0(b1+1, b2)+(c11c10+c01c
2
10)F0(b1, b2) = 0

and an analogous formula holds for a recursion on b2.

5 The Maple package MVPoisson

All this is implemented in the Maple package MVPoisson accompanying this article. It is
available from the webpage of this article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/mvp.html ,

where one can also find sample input and output.

We next discuss several examples of matrices A and computations using MVPoisson. These
examples, of interest in themselves, are motivated by the biochemical networks discussed in
Section 6.

Mostly, we illustrate the use of the command “RecsV”, which provides the recurrences satisfied
by the coefficients F0, but we also show a few examples of other commands that compute
moments.

5.1 A one-row example

The matrix A is:
A = (1 1) . (3)

As discussed in the Introduction, the conditional random variables (Xi|Y = b) are binomial.
With the notations of this paper,

F0(b) =
∑
i+j=b

λi1
i!

λj2
j!

=
1

b!
(λ1 + λ2)b .

This function F0 clearly satisfies the following recurrence:

F0(b+ 1) =
λ1 + λ2

b+ 1
F0(b)

with F0(0) = 0 and F (1) = λ1 + λ2. Indeed, for the matrix A in (3), the “RecsV(A, λ, b)”
command provides the following recurrence:

F0(b1 + 1) =
λ1 + λ2

1 + b1
F0(b1)

with initial condition F0(1) = λ1 + λ2.
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5.2 A two-row example

Let

A =

(
1 0 1
0 1 1

)
. (4)

The “RecsV(A, λ, b)” command provides the following two-dimensional recurrence:

F0(b1 + 2, b2) = − −b2λ3 + b1λ3 + λ3 − λ1λ2

λ2(2 + b1)
F0(b1 + 1, b2)

+
λ1λ3

λ2(2 + b1)
F0(b1, b2)

on b1 and

F0(b1, b2 + 2) =
−λ3 + b1λ3 − b2λ3 + λ1λ2

λ1(b2 + 2)
F0(b1, b2 + 1)

+
λ2λ3

λ1(b2 + 2)
F0(b1, b2)

on b2, with the following initial conditions:(
F0(1, 1) F0(1, 2)
F0(2, 1) F0(2, 2)

)
=(

λ3 + λ1λ2 λ2λ3 + 1
2λ

2
2λ1

λ1λ3 + 1
2λ2λ

2
1

1
2λ

2
3 + λ2λ1λ3 + 1

4λ
2
2λ

2
1

)
.

5.3 Another two-row example

Let

A =

(
1 0 1
0 2 1

)
. (5)

The “RecsV(A, λ, b)” command provides the following two-dimensional recurrence:

F0(b1 + 3, b2) =
λ1

6 + 2b1
F0(b1 + 2, b2)

− (λ2
3 − b2λ2

3 + 2λ2λ
2
1 + b1λ

2
3)

2λ2(3 + b1)(2 + b1)
F0(b1 + 1, b2)

+
λ1λ

2
3

2λ2(3 + b1)(2 + b1)
F0(b1, b2)

on b1 and

F0(b1, b2 + 3) =
λ3(b1 − 2− b2)

λ1(3 + b2)
F0(b1, b2 + 2) +

2λ2

b2 + 3
F0(b1, b2 + 1)

+
2λ2λ3

λ1(3 + b2)
F0(b1, b2)

on b2 with the initial conditions: F0(1, 1) F0(1, 2) F0(1, 3)
F0(2, 1) F0(2, 2) F0(2, 3)
F0(3, 1) F0(3, 2) F0(3, 3)

 =

 λ3 λ1λ2 λ2λ3

λ1λ3
1
2λ

2
3 + 1

2λ2λ
2
1 λ2λ1λ3

1
2λ

2
1λ3

1
2λ1λ

2
3 + 1

6λ2λ
3
1

1
6λ

3
3 + 1

2λ2λ
2
1λ3

 .
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See Figure 1.

v v v f f
ffvvv

f f f f f

v v f fv
1 2 3 4 5

1

3

4

2

Figure 1: Two-dimensional recursion fills-in the values of F0(i, j) at the locations indicated
by the open circles, using the initial data given at the locations indicated by the filled circles.
For programming convenience, indices are positive integers: in the example shown, the initial
conditions are specified for i, j = 1, 2, 3.

5.4 A two-row example with five columns

Let

A =

(
0 0 1 1 1
1 1 0 1 1

)
. (6)

The “RecsV(A, λ, b)” command provides the following two-dimensional recurrence:

F0(b1 + 2, b2) = − (−b2λ5 − b2λ4 + λ5 + λ4 − λ1λ3 − λ2λ3 + b1λ5 + b1λ4)

(λ1 + λ2)(2 + b1)
F0(b1 + 1, b2)

+
λ3(λ5 + λ4)

(λ1 + λ2)(2 + b1)
F0(b1, b2)

on b1 and

F0(b1, b2 + 2) =
(−λ5 − λ4 + b1λ5 + b1λ4 − b2λ5 − b2λ4 + λ2λ3 + λ1λ3)

λ3(b2 + 2)
F0(b1, b2 + 1)

+
(λ5 + λ4)(λ1 + λ2)

λ3(b2 + 2)
F0(b1, b2)

on b2, with the initial conditions:(
F0(1, 1) F0(1, 2)
F0(2, 1) F0(2, 2)

)
=(

λ5 + λ4 + (λ1 + λ2)λ3 (λ5 + λ4)(λ1 + λ2) + 1
2(λ1 + λ2)2λ3

λ3(λ5 + λ4) + 1
2(λ1 + λ2)λ2

3
1
2(λ5 + λ4)2 + (λ1 + λ2)λ3(λ5 + λ4) + 1

4(λ1 + λ2)2λ2
3

)
.

The command “CorMf(A, λ, b)” provides the correlation matrix for the Xi’s subject to Ax = b
and assuming that the parameters are λ. For the matrix A considered here we obtain, for
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example with λ = (1, 1, 1, 1, 1) and b = (5, 5), the following result:
1.0 −.3647053019 .5636021195 −.2407443460 −.2407443460

−.3647053019 1.0 .5636021195 −.2407443460 −.2407443460
.5636021195 .5636021195 1.0 −.4271530174 −.4271530174
−.2407443460 −.2407443460 −.4271530174 1.0 −.6350805992
−.2407443460 −.2407443460 −.4271530174 −.6350805992 1.0

 .

Note the negative entry for the correlation between X1 and X2. This corresponds to the fact
that Y2 = X1 +X2 +X4 +X5 = 5, so increases in X1 should be expected to result in decreases
in X2. Similar interpretations apply to the other entries.

5.5 A two-row example with six columns

Let

A =

(
1 0 1 0 1 1
0 1 1 1 0 1

)
. (7)

The “RecsV(A, λ, b)” command provides the following two-dimensional recurrence:

F0(b1 + 2, b2) = − λ3 + λ6 − λ5λ4 − λ5λ2 + b1λ3 + b1λ6 − λ1λ4 − λ1λ2 − b2λ3 − b2λ6

(λ4 + λ2)(2 + b1)
F0(b1 + 1, b2)

+
(λ3 + λ6)(λ5 + λ1)

(λ4 + λ2)(2 + b1)
F0(b1, b2)

on b1, and

F0(b1, b2 + 2) =
b1λ6 + b1λ3 − b2λ6 − b2λ3 + λ1λ4 + λ5λ4 + λ1λ2 + λ5λ2 − λ6 − λ3

(b2 + 2)(λ5 + λ1)
F0(b1, b2 + 1)

+ (λ3 + λ6)(λ4 + λ2)/(b2 + 2)(λ5 + λ1)F0(b1, b2)

on b2, with the initial conditions:

F0(1, 1) = λ3 + λ6 + (λ4 + λ2)(λ5 + λ1)

F0(1, 2) = (λ3 + λ6)(λ4 + λ2) +
1

2
(λ4 + λ2)2(λ5 + λ1)

F0(2, 1) = (λ5 + λ1)(λ3 + λ6) +
1

2
(λ4 + λ2)(λ5 + λ1)2

F0(2, 2) =
1

2
(λ3 + λ6)2 + (λ4 + λ2)(λ5 + λ1)(λ3 + λ6) +

1

4
(λ4 + λ2)2(λ5 + λ1)2 .

5.6 A three-row example

Let

A =

 0 0 1 0 1 0
0 0 0 1 0 1
1 1 0 0 1 1

 . (8)

The “RecsV(A, λ, b)” command provides a three-dimensional recurrence together with a set of
27 initial conditions (for each of bi = 1, 2, 3).
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5.7 A four-row example

Let

A =


1 0 0 0 1 1 0 0
0 1 0 0 1 0 0 1
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

 . (9)

For 4-row matrices as this one, the package MVPoisson is not able to return recurrences in
a reasonable amount of time. However, one can now use the generating functions directly to
compute the relevant quantities of interest, except that it is no longer possible to treat large
inputs.

The command “SipurD” is used to generate averages and variances (“SipurD2f” implements a
more efficient algorithm specifically for matrices with two rows). For the matrix A in (9) and, for
example, λ = (1, 1, 1, 1, 1, 1, 1, 1) we obtain that E[X1|Y = b] ≈ 1.897 when b = (10, 10, 10, 10)
and ≈ 2.813 when b = (20, 20, 20, 20) (the value may be obtained to arbitrary precision), and
that the variance of X1 conditioned on this same b is ≈ 1.112 when b = (10, 10, 10, 10) and
≈ 1.379 when b = (20, 20, 20, 20). The program also guesses asymptotic formulas for these
quantities as a function of the entries of b, and as such is a useful tool in research, suggesting
possible general formulas that one could attempt to prove.

6 Biochemical applications

We now explain how the problem studied here arises in the context of systems described by
chemical network theory, and in particular chemical kinetics. There are two fundamentally
different ways to mathematically model chemical reactions. One of them is based on differential
equations modeling, and the other one on stochastic models. Our problem arises from this
second approach. However, to understand its interest, it is important to first discuss the
differential equation case. Differential equation models are useful when the number of molecules
is very large, so that a continuous approximation is appropriate.

Suppose that n “species” interact through a network of reactions. The term species is used
to refer to the elementary objects participating in the interactions: in molecular biology, these
are typically ions, atoms, or molecules; in population biology and ecology, they may represent
distinct animal or plant populations, particular age groups, and so forth. It is natural to describe
such a network by a system of n differential equations which constrains the time evolution of
the populations (or concentrations) of the various species. These sets of differential equations
take the following general form:

ẋ = ΓR(x)

(dot indicates time derivative) where x = x(t) is an n-vector of species numbers (non-negative
real numbers) and Γ is an n × m matrix, called the “stoichiometry” matrix, whose columns
describe how many units of each species are created or destroyed by each of m possible reactions.
The components of the m-vector R(x) quantify the reaction rates for each of the m reactions,
as a function of the current populations as well as parameters (reaction constants) that reflect
physical and chemical information.

Chemical reactions are often described by graphs whose nodes are the “complexes” (the species,
or combinations of species, that participate in the reactions) and whose edges are labeled by
reaction rate information. Often, a mass-action kinetics model is used, which means that the
reaction rate is proportional to the product of the populations of the reactants, and only the
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proportionality constant, called the kinetic constant associated to the corresponding reaction,
is displayed on an edge. There is a systematic and simple way to map graph descriptions to
differential equations.

Some of the main results in chemical network theory were obtained by Horn, Jackson, and
Feinberg (see [7, 8] and also [14] for an exposition using a somewhat different formalism).
These results guarantee that solutions of the system of differential equations are well-behaved
(stability of equilibria, uniqueness of equilibria modulo stoichiometric constraints), provided
that certain structural properties are satisfied by the network. The main such theorem is valid
for what are called complex balanced networks. A sufficient (though not necessary) condition
for complex balancing is that the network be “weakly reversible” and have “deficiency zero”.
The deficiency is computed as c − ` − r, where c is the number of complexes, r is the rank of
the matrix Γ, and ` is the number of “linkage classes” (connected components of the reaction
graph). Weak reversibility means that each connected component of the reaction graph must
be strongly connected. We refer the reader to the citations for details on deficiency theory. Our
examples are all complex balanced.

When the numbers of molecules are very small, as is sometimes the case in molecular biology,
a discrete stochastic model may be more appropriate than a continuous differential equation
model. Indeed, fluctuations cannot be ignored when dealing with genes (usually one or two
copies), mRNA’s (in the tens), ribosomes and RNA polymerases (up to hundreds) or certain
proteins that are at low numbers.

Stochastic models fully account for the probabilistic nature of reactions. The number of in-
dividual copies of each species at (continuous) time t is viewed as a random process Xi(t),
i = 1, . . . , n. The Chemical Master Equation (CME), which is the differential form of the
Chapman-Kolmogorov forward equation, is a linear first-order differential equation that de-
scribes the time evolution of the joint probability distribution of the Xi(t)’s. Often, the interest
is in long-time behavior, after a transient, that is to say in the probabilistic steady state of
the system: the joint distribution of the random variables Xi = Xi(∞) that result in the limit
as t → ∞ (provided that such a limit exists in an appropriate technical sense). This joint
distribution is a solution of the steady state CME (ssCME), the infinite set of linear equations
obtained by setting the right-hand side of the CME to zero.

A very beautiful recent observation in [2] is that the complex balancing condition, introduced
originally for deterministic differential equation models, is equivalent to the “nonlinear traffic
equations” from queuing theory, described in Kelly’s textbook[11], Chapter 8 (see also [12] for
a discussion), which in turn guarantees that there is a solution π of the ssCME that is formally
the joint distribution of n (the number of species) independent Poisson random variables. One
associates to each deterministic steady state x̄ ∈ Rn≥0 (that is, ΓR(x̄) = 0, in other words, a
zero of the vector field ΓR(x)), a vector π that is a solution of the ssCME. The vector π is
indexed by the n-dimensional lattice of non-negative integers, N = (N1, . . . , Nn) ∈ Zn≥0. We
write the Nth entry of π as P (N) (thought of as the probability, in steady state, of the event
(X1, X2, . . . , Xn) = (N1, . . . , Nn)). Let us write the product x̄N1

1 . . . x̄Nn
n as “x̄N” and N1! . . . Nn!

as “N !”. Then, the assertion is that the vector π whose components are

P (N) =
x̄N

N !

(as well as any scalar multiple of this vector) is a solution of the ssCME. We provide a self-
contained proof of this fact in an Appendix to this paper.

However, the existence of this product form distribution does not mean that the joint distribu-
tion of the variables Xi will be independent Poisson, because the solution of the ssCME is not,
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in general, unique. The lack of uniqueness stems from conservation laws. Because of possible
conservation laws, things are a bit subtle.

As an example, suppose that two molecules of species A and B can reversibly combine through
a bimolecular reaction to produce a molecule of species C: A + B ↔ C. Let us denote the
number of molecules of species A, B, and C at time t by Xi(t), i = 1, 2, 3 respectively. The
count of A molecules goes down by one every time that a reaction takes place, at which time
the count of C molecules goes up by one. Thus, the sum of the number of A molecules plus the
number of C molecules remains constant: X1(t) + X3(t) = b1. Similarly, X2(t) + X3(t) = b2,
because the total count of B and C molecules is also constant. This holds for all t, so taking
limits as t→∞ (ignoring technicalities!), we have that, for the steady state random variables,
still X1 +X3 = b1 and X2 +X3 = b2. Let us introduce Y1 = X1 +X3 and Y2 = X2 +X3. Thus,
depending on the initial conditions b1 = X1(0) + X3(0) and b2 = X2(0) + X3(0), the limiting
distribution will be that of X1 and X2 conditioned on Y1 = b1 and Y2 = b2. Once we collect
this information into a matrix A, in this case

A =

(
1 0 1
0 1 1

)
,

we are back to the situation where we want to study the behavior of the conditioned variables
Xi|Yj , where the Xi’s are Poisson distributed.∗

The rest of this section discusses various examples. To make the notations compatible with
usage in probability theory, we use “λ” for the Poisson rates (instead of x̄i) and k for multi-
indices (instead of N).

6.1 A simple reversible reaction

Consider the following reaction:

X1
k1−⇀↽−
k2

X2 (10)

in which one molecule of substance X1 reversibly transforms to X2.

This reaction system is complex-balanced, because it is weakly reversible and it has 2 complexes,
1 strongly connected component, and rank 1, and hence deficiency zero.

The steady states of this reaction network are given by the solutions λ = (λ1, λ2) of the equation
k1λ1 = k2λ2. We may pick, for example, λ = (1, k1/k2).

Every time that the forward reaction takes place, the count of molecules of X1 decreases by one
and the count of molecules of X2 increases by one; the converse happens for the backward reac-
tion. Thus, the total number of molecules of X1 and X2 remains constant. The corresponding
A matrix is given in (3).

6.2 A bimolecular reaction

Consider the following reaction:

X1 +X2
k1−⇀↽−
k2

X3 (11)

∗Our discussion is incomplete from a probabilistic viewpoint, as we have not addressed questions of uniqueness
and convergence. These questions require a careful study of irreducibility properties of the associated Markov
chains. We are only interested here in the computational problem of obtaining statistics for the conditioned
variables.
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in which one molecule of X1 combines reversibly with one molecule of X2 in order to produce
one molecule of X3.

This reaction system is complex-balanced, because it is weakly reversible and it has 2 complexes,
1 strongly connected component, and rank 1, and hence deficiency zero.

The steady states of this reaction network are given by the solutions λ = (λ1, λ2, λ3) of the
equation

k1λ1λ2 = k2λ3 .

We may pick, for example, λ = (1, 1, k1/k2).

Every time that the forward reaction takes place, the counts of molecules of X1 and X2 decreases
by one and the count of molecules of X3 increases by one; the converse happens for the backward
reaction. Thus, the total number of molecules of X1 and X3 remains constant, as does the total
number of molecules of X2 and X3. The matrix A is as in (4).

6.3 A more interesting bimolecular reaction

Consider the following reaction:

2X1 +X2
k1−⇀↽−
k2

2X3 (12)

which may represent, when X1 = H2, X2 = O2, and X3 = H2O, the reversible creation of a
molecule of water, when two molecules of the diatomic hydrogen gas combine with one molecule
of the diatomic oxygen gas to produce two molecules of water. (The forward reaction produces
energy, and the reverse reaction, breaking water to form hydrogen and oxygen, requires energy,
for instance through electrolysis. The chemical reaction formalism used here does not account
for energy production or consumption.)

This reaction system is complex-balanced, because it is weakly reversible and it has 2 complexes,
1 strongly connected component, and rank 1, and hence deficiency zero.

The steady states of this reaction network are given by the solutions λ = (λ1, λ2, λ3) of the
equation

k1λ
2
1λ2 = k2λ

2
3 .

We may pick, for example, λ = (1, 1,
√
k1/k2).

The total sum of hydrogen and water molecules remains constant, and for each two molecules
of oxygen there is one of water produced and vice versa. The matrix A is as in (5).

6.4 A receptor-ligand model

Receptor-ligand interactions play an important role in the understanding of the biochemical
mechanisms that initiate cellular signaling, and their study is central to pharmacology. A
“two-state” model for such interactions studied in [5] is shown, pictorially, in Figure 2.

The species participating in this reaction are: R1 and R2, which represent the free receptors in
an inactive and active conformational state respectively, the free ligand L, and the respective
receptor-ligand complexes C1 = R1L and C2 = R2L.
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Figure 2: A two-state receptor-ligand network

The steady-states λ = (λ1, λ2, λ3, λ4, λ5) = (R1, R2, L, C1, C2) of this system must satisfy the
following polynomial equations:

−(k21 + k31)R1L+ k12C1 + k13R2L = 0

−(k13 + k43)R2L+ k31R1L+ k34C2 = 0

−k21R1L− k43R2L+ k12C1 + k34C2 = 0

−(k12 + k42)C1 + k21R1L+ k24C2 = 0

−(k34 + k24)C2 + k42C1 + k43R2L = 0

For example, when all kinetic constants are ki = 1 (this is not a realistic biological choice of
constants, but is picked simply for illustration), then λ = (1, 1, 1, 1, 1) is a steady-state.

This reaction system is complex-balanced, because it is weakly reversible and it has 4 complexes,
1 strongly connected component, and rank 3, and hence deficiency zero.

The conservation of L+C1 +C2 (total amount of ligand) and R1 +R2 +C1 +C2 (total amount
of receptors) leads to the matrix in (6).

6.5 A two-component signaling system in bacteria

The next example is from [4]. It models the “EnvZ/OmpR system” in E.coli bacteria. This
system regulates the production of certain transport proteins (porins OmpF and OmpC) which
act as pores allowing molecules to diffuse through the cell membrane. The system includes
a kinase, EnvZ, which phosphorylates and dephosphorylates the response regulator OmpR,
and is a particularly well-studied “two-component signaling system” in bacteria. The model is
shown, pictorially, in Figure 3, where, for simplicity, we omit labeling each arrow by a reaction
constant. We are using the following short-hand notations for the respective notations in [4]:

-
�

?

6

�
�
�+�
�3

Q
Qs

R+ Z

R+ ZP

ERP

EPR

RP + Z

Figure 3: A two-component signaling system

X1 = R = OmpR, X2 = ZP = EnvZ-P (phosphorylated form), X3 = ERP = (EnvZ-P)OmpR
(complex), X4 = Z = EnvZ, X5 = RP = OmpR-P (phosphorylated form), and X6 = EPR =
(EnvZ)OmpR-P (complex).
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This reaction system is complex-balanced, because it is weakly reversible and it has 5 complexes,
1 strongly connected component, and rank 4, and hence deficiency zero.

With all reaction constants equal to one, λ = (1, 1, 1, 1, 1, 1) is a steady state.

The system is described by six differential equations, subject to two constraints. These con-
straints reflect that the total amount of each of OmpR and EnvZ should stay constant, respec-
tively, and give the rows of the A matrix for this example as that shown in (7).

6.6 A receptor antagonist model

The paper [10] analyzes a model involving the cytokine Interleukin-1 (IL-1), which is produced
in response to inflammatory stimuli. The species in the model are IL-1 (denoted as L for
“ligand”), the IL-1 receptor (denoted by R), the human IL-1 receptor antagonist (denoted by
A), a decoy receptor or “trap” (denoted by T) which, by binding to the ligand, helps block
IL-1 signaling, and the four possible dimers RL, RA, AT, and LT. The model consists of four
reversible reactions:

R+ L
k2−⇀↽−
k1

RL

R+A
k4−⇀↽−
k3

RA

A+ T
k6−⇀↽−
k5

AT

L+ T
k8−⇀↽−
k7

LT

This reaction system is complex-balanced, because it is weakly reversible and it has 8 complexes,
4 strongly connected components, and rank 4, and hence deficiency zero.

The total amounts of R, L, A, and T are conserved, giving rise to a matrix A with 4 rows.
Ordering the states as follows: R, L, A, T, RL, RA, AT, LT, the resulting matrix is as in (9).

6.7 A futile-cycle example

We now describe an example that motivates looking at a matrix A as in (8). In contrast to
the previous examples, however, this one is not complex-balanced and thus does not fit the
assumptions for the ssCME having a solution in product form. So the interest in the condi-
tional statistics problem for Poisson variables is purely academic for this particular example.
Nonetheless, it is worth seeing how such a matrix A arises.

“Futile cycles” involving phosphorylation and dephosphorylation are ubiquitous in molecular
biology (see for example [15] for more discussion and references). In such processes, an enzyme
E (a kinase) catalizes the transformation of a substrate S into a product P , passing through
one or more intermediate complexes C. A different enzyme F (a phosphotase) catalizes the
transformation of P back into S, also passing through one or mode intermediate complexes.
The simplest model (just one intermediate) for such a reaction is as follows:

E + S
k1−⇀↽−
k2

C
k3−⇀↽−
k4

E + P

F + P
k5−⇀↽−
k4

D
k7−⇀↽−
k8

F + S

15



in which we used C and D to denote the intermediate complexes. (Usually, the backward
reactions to complex dissociation, labeled by k4 and k8, are not included in the model, since
they are energetically very unfavorable.) This system has deficiency one (6 complexes, two
classes, and rank 3). Thus, the basic deficiency zero theory does not apply. Interestingly,
however, a variation, “deficiency one theory”, can be used to predict the existance of multiple
steady states for this system; see [6].

There are three conservation laws, corresponding to the conservation of total kinase, phospho-
tase, and substrate/product. Ordering the variables as S, P,E, F,C,D, we obtain the matrix
A as in (8).

Appendix

For completeness, we show here that complex balanced reactions admit product form equilib-
rium densities for their Chemical Master Equations. The proof is basically that in [2, 11, 12].

Setup

A chemical reaction network is specified by:

R = {1, . . . ,m}, the set of reactions.

C ⊆ Rn≥0, a finite set of complexes.

Example: if there are two reactions 1 : A+B → C+D and 2 : 2A+C → B, then the set C will
have four elements, listing the species participating in each: (1, 1, 0, 0), (0, 0, 1, 1), (2, 0, 1, 0),
(0, 1, 0, 0).

S, T : R → C are the source and target functions that describe which are the reactant and
product complexes, respectively.

Example: with the above reactions, S(1) = (1, 1, 0, 0), T (1) = (0, 0, 1, 1), S(2) = (2, 0, 1, 0),
T (2) = (0, 1, 0, 0).

We make the following notational convention: for vectors x, c ∈ Rn≥0, xc := xc11 . . . xcnn (with

00 = 1), and for nonnegative integer vectors N = (N1, . . . , Nn), N ! := N1! . . . Nn!.

By definition, a vector π = (P (N), N ∈ Zn≥0) is a steady-state solution of the Chemical Master
Equation associated to a given reaction network if it satisfies:∑

i∈R
P (N − T (i) + S(i))Ai(N − T (i) + S(i)) =

∑
i∈R

P (N)Ai(N) (13)

for each N ∈ Zn≥0, where Ai(N) is the ith “propensity function” [9]: Ai(N)dt is the probability
that reaction i will occur in a small time interval [t, t+dt] if the state of the system is N at time
t. This function is proportional to the number of ways in which the N molecules can combine
to form the ith complex:

Ai(N) = k̃i
N !

(N − S(i))S(i)!
= ki

N !

(N − S(i))!
.

The constant ki is the same as the deterministic kinetic constant of the respective reaction. (If
the deterministic reaction were to be written in terms of concentrations, or population densities,
instead of numbers of individuals, then a volume-dependent correction factor must be used, but
this would not change results in any manner.)
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A complex balanced steady state (CBSS) with respect to the given network and kinetic constants
k is an x̄ ∈ Rn>0 (which is thought of as a vector of species populations) such that the following
property holds for each complex c ∈ C:∑

i∈T−1(c)

kix̄
S(i) =

∑
i∈S−1(c)

kix̄
S(i) (14)

(note that one can equally well write “x̄c” and bring this term outside of the sum, in the
right-hand side).

Complex balancing means that each “complex” is balanced in inflow and outflow. This is a
Kirschoff current law (in-flux = out-flux, at each node) when one writes a chemical network.

A counter-example to complex-balancing is this reaction network:

A
k1−→ B, 2B

k2−→ 2A

(or, if one prefers reversible reactions, one may take instead an example due to Wegsheider,
A↔ B and 2A↔ B). In steady state, k1a− 2k2b

2 = 0. But complex-balancing would require
that the outflow of “A” be zero (since there are no inflows into the “complex” A), which means
k1a = 0, and misses the nonzero steady states. (One could also argue with the complex 2A, or
with B, or with 2B.)

A complex-balanced system is one with the property that every steady state is complex balanced.
This concept was studied in detail by Horn and Jackson and by Feinberg in the early 1970s.
Feinberg [7, 8] showed that for a special type of system (weakly reversible and deficiency zero),
for any kinetic constants there is a steady state x̄ ∈ Rn>0 satisfying (14) (and, in fact, every
steady state is complex balanced, that is, the system is complex balanced).

The Key Lemma

Suppose that x̄ is a complex balanced equilibrium, that is, it satisfies (14). Take any function
α : C → R on complexes. Then:∑

i∈R
kix̄

S(i)−T (i)α(T (i)) =
∑
i∈R

kiα(S(i)) . (15)

Proof. Since ∑
i∈R

=
∑
c∈C

∑
i∈T−1(c)

and
∑
i∈R

=
∑
c∈C

∑
i∈S−1(c)

it is enough to show that, for each fixed c:∑
i∈T−1(c)

kix̄
S(i)−c α(T (i)) =

∑
i∈S−1(c)

ki α(S(i)) .

Since T (i) = c and S(i) = c in the left-hand side and right-hand side respectively, this is the
same as the CBSS condition upon multiplication by x̄−cα(c).

Corollary. The vector Π with

P (N) =
x̄N

N !

is a steady state solution of the CME.

Proof. Obvious using α(c) = x̄N

(N−c)! , for each N ∈ Zn≥0.
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