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Multivariate Poisson random variables subject to linear integer
constraints arise in several application areas, such as queuing
and biomolecular networks. This note shows how to compute
conditional statistics in this context, by employing Wilf–Zeilberger
theory and associated algorithms. A symbolic computation package
has been developed and is made freely available. A discussion of
motivating biomolecular problems is also provided.
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1. Introduction

In application areas such as queuing and biomolecular networks, one is often interested in the
study of independent Poisson random variables subject to side information represented by linear in-
teger constraints. We show how to reduce the computation of conditional statistics for this problem
to the evaluation of coefficients of generating functions. These coefficients can, in turn, be computed
using Wilf–Zeilberger (WZ) theory. We discuss this reduction, and make available a symbolic compu-
tation package developed for that purpose.

We next provide a formulation of the problem, and briefly indicate its motivations. In Section 2,
we explain the reduction to exponential type generating functions, and in Section 3 we discuss the
fact that recurrences can be obtained for their coefficients. Section 4 discusses the special case of just
two side constraints, which is considerably simpler. Section 5 illustrates the use of the symbolic pack-
age through a number of examples, all of which arise from the biomolecular networks discussed in
Section 6. Appendix A includes a proof of the basic representation theorem which enables application
of this techniques to certain reaction networks.

✩ Accompanied by Maple package MVPoisson downloadable from http://www.math.rutgers.edu/~zeilberg/mamarim/
mamarimhtml/mvp.html.
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Suppose that we have n independent Poisson random variables, X j ( j = 1, . . . ,n), with parameters
λ j respectively. In other words

Pr(X1 = k1, X2 = k2, . . . , Xn = kn) = e−(λ1+···+λn) λ
k1
1

k1!
λ

k2
2

k2! · · · λ
kn
n

kn! . (1)

Suppose that we cannot observe the X j ’s directly, but only a certain number, m, of linear combi-
nations of them:

Yi =
n∑

j=1

aij X j (i = 1, . . . ,m),

where A = (aij) is a certain m × n matrix with non-negative coefficients.
We are interested in the following questions:

1. Can one compute (fast!), for any given vector (b1, . . . ,bm) (possibly with large coordinates), the
probability

F (b1, . . . ,bm) := Pr(Y1 = b1, . . . , Ym = bm).

2. Can one compute (fast!), for any given vector (b1, . . . ,bm) (possibly with large coordinates), the
conditional expectation

G j(b1, . . . ,bm) := E[X j | Y1 = b1, . . . , Ym = bm] (1 � j � n).

3. More generally, can one compute (fast!), the higher moments

G(r)
j (b1, . . . ,bm) := E

[
Xr

j | Y1 = b1, . . . , Ym = bm
]

(r � 2),

that would immediately allow us to compute the moments about the mean. Can we compute
(fast!) mixed moments, in particular the covariances?

For example, suppose that Xi is Poisson with parameter λi , i = 1,2, X1 and X2 are independent,
and A = (1 1). Thus, Y = X1 + X2 is Poisson with parameter λ1 + λ2. Fix a non-negative integer b. The
probability that X1 = k given that Y = X1 + X2 = b is:

e−(λ1+λ2) λ
k
1

k!
λb−k

2

(b − k)!
/

e−(λ1+λ2) (λ1 + λ2)
b

b!
which equals

(
b

k

)
pk(1 − p)b−k

with p = λ1
λ1+λ2

. It follows that (X1|Y = b) is a binomial random variable B(b, p), and similarly
(X2|Y = b) is a binomial random variable B(b,1 − p). Statistics for binomial variables (means, vari-
ances, and all moments) are well-known and easy to compute. On the other hand, for more compli-
cated linear constraints, and especially if more than one such constraint is imposed, statistics become
considerably harder to obtain.



Author's personal copy

E.D. Sontag, D. Zeilberger / Advances in Applied Mathematics 44 (2010) 359–377 361

A simple example of where this type of problem might arise is as follows. Suppose that the ran-
dom variables Xi count the number of calls placed, during a typical time period, to an international
service center and originating from a specific country or geographical area and in a specific customer
language. For example, X1 may represent the number of English-speaking callers from the USA, X2
the number of Spanish-speaking callers from the USA, X3 the number of English-speaking callers
from Latin America, X4 the number of Spanish-speaking callers from Latin America, X5 the number
of English-speaking callers from the UK, and X6 the number of Spanish-speaking callers from the
UK. It is natural to assume that each of the random variables is Poisson-distributed. Now, suppose
that we want to know what are the statistics of the variable X1, for example, the variance in the
number of English-speaking callers from the USA, subject to the additional information that the to-
tal number of Spanish-language calls received was 100 and that the number of calls received from
the US was 50. That is, we are interested in the statistics of X1 conditioned on Y1 = 100, Y2 = 50
with Y1 = X2 + X4 + X6 and Y2 = X1 + X2. (More interestingly, one might have mixed information,
represented by more general linear combinations.) We were originally motivated in this work by ap-
plications in molecular biology; we defer to Section 6 a detailed discussion and examples.

2. The generating function

Fix a matrix A = (aij) (1 � i � m, 1 � j � n), once and for all. Let

F0(b1, . . . ,bm) =
∑

k1,...,kn�0
a11k1+···+a1nkn=b1,...,am1k1+···+amnkn=bm

λ
k1
1

k1!
λ

k2
2

k2! · · · λ
kn
n

kn!

(value is zero if the sum is empty). Thus, our focus will be on computing F0, from which we can
easily obtain F , since

F (b1, . . . ,bm) = e−(λ1+···+λn) F0(b1, . . . ,bm).

Let f0 be the (multivariable) generating function of F0, in other words

f0(z1, . . . , zm) =
∑

b1�0,...,bm�0

F0(b1, . . . ,bm)zb1
1 · · · zbm

m .

Our quantity of interest, F0(b1, . . . ,bm), is the coefficient of zb1
1 · · · zbm

m in the multivariable Taylor
expansion about the origin of f0(z1, . . . , zm).

We have:

f0(z1, . . . , zm) =
∑

b1�0,...,bm�0

( ∑
k1,...,kn�0

a11k1+···+a1nkn=b1,...,am1k1+···+amnkn=bm

λ
k1
1

k1!
λ

k2
2

k2! · · · λ
kn
n

kn!

)
zb1

1 · · · zbm
m .

By changing the order of summation, this equals

∑
k1�0,...,kn�0

λ
k1
1

k1!
λ

k2
2

k2! · · · λ
kn
n

kn! za11k1+···+a1nkn
1 · · · zam1k1+···+amnkn

m

=
∑

k1�0,...,kn�0

(λ1za11
1 za21

2 · · · zam1
m )k1

k1! · · · (λnza1n
1 za2n

2 · · · zamn
m )kn

kn!



Author's personal copy

362 E.D. Sontag, D. Zeilberger / Advances in Applied Mathematics 44 (2010) 359–377

=
( ∑

k1�0

(λ1za11
1 za21

2 · · · zam1
m )k1

k1!
)

· · ·
( ∑

kn�0

(λnza1n
1 za2n

2 · · · zamn
m )kn

kn!
)

= exp
(
λ1za11

1 za21
2 · · · zam1

m
) · · · exp

(
λnza1n

1 za2n
2 · · · zamn

m
)

= exp
(
λ1za11

1 za21
2 · · · zam1

m + · · · + λnza1n
1 za2n

2 · · · zamn
m

)
.

We have just derived

Theorem 1.

f0(z1, . . . , zm) = exp

(
n∑

j=1

λ j

m∏
i=1

z
aij

i

)
.

The conditional probability

Pr(X1 = k1, X2 = k2, . . . , Xn = kn | Y1 = b1, . . . , Ym = bm)

is the same as the expression in (1) divided by F (b), provided that
∑n

j=1 aijk j = bi for all i, and is zero

otherwise. Recall that the rth factorial moment of a random variable W , E[W (r)], is, by definition, the
expectation of W !/(W − r)!. We are interested in the conditional factorial moments of X j given Y = b,

which we will denote as E[X (r)
j | Y ]. By definition, E[X (r)

j | Y ] is the following expression divided
by F0(b):

∑
k1,...,kn�0

a11k1+···+a1nkn=b1,...,am1k1+···+amnkn=bm

k j(k j − 1) · · · (k j − r + 1)
λ

k1
1

k1!
λ

k2
2

k2! · · · λ
kn
n

kn! . (2)

Now, expression (2) is the same as the result of applying the operator λr
j(

∂
∂λ j

)r to F0(b1, . . . ,bm) when

viewing the λ’s as variables and not as constants. On the other hand,

λr
j

(
∂

∂λ j

)r

f0(z1, . . . , zm) =
∑

b1�0,...,bm�0

λr
j

(
∂

∂λ j

)r

F0(b1, . . . ,bm)zb1
1 · · · zbm

m

and therefore expression (2) is the same as the coefficient of zb1
1 · · · zbm

m in λr
j(

∂
∂λ j

)r f0(z1, . . . , zm).

Since, as formal power series, we have the representation in Theorem 1, we conclude that ex-
pression (2) is the same as the coefficient of zb1

1 · · · zbm
m in (

∏m
i=1 z

aij

i )r f0(z), which is the same
as F (b1 − ra1 j,b2 − ra2 j, . . . ,bm − ramj) when all bi − rai j � 0 and zero otherwise. In conclusion,

E[X (r)
j | Y ] equals λr

j · F0(b1 − ra1 j,b2 − ra2 j, . . . ,bm − ramj) divided by F0(b). We have proved:

Theorem 2. The conditional factorial moments E[X (r)
j | Y ] are given in terms of the F0(b1, . . . ,bm) by

λr
j · F0(b1 − ra1 j,b2 − ra2 j, . . . ,bm − ramj)

F0(b1, . . . ,bm)

when all bi − rai j � 0 and zero otherwise.
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So everything depends on a fast computation of the coefficients F0(b1, . . . ,bm), of f0(z1, . . . , zm).
By taking mixed partial derivatives, we can easily derive analogous expressions for mixed mo-

ments, in particular, the covariances.

3. Recurrences

From now on, let us assume that the entries of A, (aij), are non-negative integers. In that case,
we can write

f0(z) = exp
(

Q (z1, . . . , zm)
)
,

where Q (z1, . . . , zm) is the polynomial

Q (z1, . . . , zm) :=
n∑

j=1

λ j

m∏
i=1

z
aij

i .

By Cauchy’s theorem, we can express F (b1, . . . ,bm) as a multi-contour integral:

F (b1, . . . ,bm) =
(

1

2π i

)m ∫
|z1|=c

· · ·
∫

|zm|=c

exp(Q (z1, . . . , zm))

zb1+1
1 · · · zbm+1

m

dz1 · · · dzm.

By the celebrated Wilf–Zeilberger theory [16], F (b1, . . . ,bm) satisfies pure linear recurrences with
polynomial coefficients in each of its arguments. This means that for each i between 1 and m, there
exists a positive integer Ri (the order) and polynomials P (i)

r (b1, . . . ,bm) (0 � r � Ri ) such that the
following holds, for all (b1, . . . ,bm):

Ri∑
r=0

P (i)
r (b1, . . . ,bm)F (b1, . . . ,bi−1,bi + r,bi+1, . . . ,bm) = 0.

Once these recurrences are known, one can compute F (b1, . . . ,bm) in time linear in b1 +· · ·+ bm and
with constant memory allocation (one only needs to remember, at each stage, a constant number of
values).

In rare cases, the leading term of the recurrence would vanish, in which case, we would encounter
a (discrete) “singularity”, and would not be able to go on, since we would have to divide by 0, but
in that case one can show that there is an alternative route, using another order of applying the
recurrences.

The Apagodu–Zeilberger multi-variable extension [3] of the Almkvist–Zeilberger algorithm [1] can
find such recurrences explicitly. Unfortunately, for matrices A with more than three rows, the time
taken to find such recurrences is prohibitive, but many matrices of interest have two or three rows.

4. Two-rowed matrices

If the matrix A only has two rows, and its entries are only {0,1}, then one can express F (b1,b2)

as a single sum. Indeed, let

• c10 be the sum of the λ j ’s for which a1, j = 0, a2, j = 1,
• c01 be the sum of the λ j ’s for which a1, j = 1, a2, j = 0,
• c11 be the sum of the λ j ’s for which a1, j = 1, a2, j = 1.
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Then, we have

Q (z) = c01z1 + c10z2 + c11z1z2,

and so

f0(z1, z2) = eQ (z) =
∞∑

k=0

Q (z)k

k!

=
∑

α�0, β�0, γ �0

(c01z1)
α(c10z2)

β(c11z1z2)
γ

α!β!γ !

=
∑

α�0, β�0, γ �0

cα
01cβ

10cγ
11zα+γ

1 zβ+γ
2

α!β!γ ! .

To get F0(b1,b2), we must extract the coefficient of zb1
1 zb2

2 which entails α = b1 − γ , β = b2 − γ , and
we have the single-sum binomial coefficient (hypergeometric) sum (replacing γ by k)

F0(b1,b2) =
min(b1,b2)∑

k=0

ck
11cb1−k

01 cb2−k
10

k!(b1 − k)!(b2 − k)! .

Using the Zeilberger Algorithm [13,17], we get the following linear recurrence:

(
c10b2

1 + 4c10 − 2c10b2 + 4c10b1 − c10b1b2
)

F0(b1 + 2,b2)

+ (−c11b1 − c11 + b2c11 + b2c10c01 − 2b1c10c01 − 3c01c10)F0(b1 + 1,b2)

+ (
c11c10 + c01c2

10

)
F0(b1,b2) = 0

and an analogous formula holds for a recursion on b2.

5. The maple package MVPoisson

All this is implemented in the Maple package MVPoisson accompanying this article. It is available
from the webpage of this article

http://www.math.rutgers.edu/˜zeilberg/mamarim/mamarimhtml/mvp.html,

where one can also find sample input and output.
We next discuss several examples of matrices A and computations using MVPoisson. These exam-

ples, of interest in themselves, are motivated by the biochemical networks discussed in Section 6.
Mostly, we illustrate the use of the command “RecsV”, which provides the recurrences satisfied by

the coefficients F0, but we also show a few examples of other commands that compute moments.

5.1. A one-row example

The matrix A is:

A = (1 1). (3)
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As discussed in the introduction, the conditional random variables (Xi | Y = b) are binomial. With the
notations of this paper,

F0(b) =
∑

i+ j=b

λi
1

i!
λ

j
2

j! = 1

b! (λ1 + λ2)
b.

This function F0 clearly satisfies the following recurrence:

F0(b + 1) = λ1 + λ2

b + 1
F0(b)

with F0(0) = 0 and F (1) = λ1 + λ2. Indeed, for the matrix A in (3), the “RecsV(A, λ,b)” command
provides the following recurrence:

F0(b1 + 1) = λ1 + λ2

1 + b1
F0(b1)

with initial condition F0(1) = λ1 + λ2.

5.2. A two-row example

Let

A =
(

1 0 1
0 1 1

)
. (4)

The “RecsV(A, λ,b)” command provides the following two-dimensional recurrence:

F0(b1 + 2,b2) = −−b2λ3 + b1λ3 + λ3 − λ1λ2

λ2(2 + b1)
F0(b1 + 1,b2)

+ λ1λ3

λ2(2 + b1)
F0(b1,b2)

on b1 and

F0(b1,b2 + 2) = −λ3 + b1λ3 − b2λ3 + λ1λ2

λ1(b2 + 2)
F0(b1,b2 + 1)

+ λ2λ3

λ1(b2 + 2)
F0(b1,b2)

on b2, with the following initial conditions:

(
F0(1,2) F0(2,2)

F0(1,1) F0(2,1)

)
=

(
λ3 + λ1λ2 λ2λ3 + 1

2 λ2
2λ1

λ1λ3 + 1
2 λ2λ

2
1

1
2 λ2

3 + λ2λ1λ3 + 1
4 λ2

2λ
2
1

)
.
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Fig. 1. Two-dimensional recursion fills-in the values of F0(i, j) at the locations indicated by the open circles, using the initial
data given at the locations indicated by the filled circles. For programming convenience, indices are positive integers: in the
example shown, the initial conditions are specified for i, j = 1,2,3.

5.3. Another two-row example

Let

A =
(

1 0 1
0 2 1

)
. (5)

The “RecsV(A, λ,b)” command provides the following two-dimensional recurrence:

F0(b1 + 3,b2) = λ1

6 + 2b1
F0(b1 + 2,b2)

− (λ2
3 − b2λ

2
3 + 2λ2λ

2
1 + b1λ

2
3)

2λ2(3 + b1)(2 + b1)
F0(b1 + 1,b2)

+ λ1λ
2
3

2λ2(3 + b1)(2 + b1)
F0(b1,b2)

on b1 and

F0(b1,b2 + 3) = λ3(b1 − 2 − b2)

λ1(3 + b2)
F0(b1,b2 + 2) + 2λ2

b2 + 3
F0(b1,b2 + 1)

+ 2λ2λ3

λ1(3 + b2)
F0(b1,b2)

on b2 with the initial conditions:

⎛
⎝ F0(1,3) F0(2,3) F0(3,3)

F0(1,2) F0(2,2) F0(3,2)

F0(1,1) F0(2,1) F0(3,1)

⎞
⎠ =

⎛
⎝ λ3 λ1λ2 λ2λ3

λ1λ3
1
2 λ2

3 + 1
2 λ2λ

2
1 λ2λ1λ3

1
2 λ2

1λ3
1
2 λ1λ

2
3 + 1

6 λ2λ
3
1

1
6 λ3

3 + 1
2 λ2λ

2
1λ3

⎞
⎠ .

See Fig. 1.
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5.4. A two-row example with five columns

Let

A =
(

0 0 1 1 1
1 1 0 1 1

)
. (6)

The “RecsV(A, λ,b)” command provides the following two-dimensional recurrence:

F0(b1 + 2,b2) = − (−b2λ5 − b2λ4 + λ5 + λ4 − λ1λ3 − λ2λ3 + b1λ5 + b1λ4)

(λ1 + λ2)(2 + b1)
F0(b1 + 1,b2)

+ λ3(λ5 + λ4)

(λ1 + λ2)(2 + b1)
F0(b1,b2)

on b1 and

F0(b1,b2 + 2) = (−λ5 − λ4 + b1λ5 + b1λ4 − b2λ5 − b2λ4 + λ2λ3 + λ1λ3)

λ3(b2 + 2)
F0(b1,b2 + 1)

+ (λ5 + λ4)(λ1 + λ2)

λ3(b2 + 2)
F0(b1,b2)

on b2, with the initial conditions:

(
F0(1,2) F0(2,2)

F0(1,1) F0(2,1)

)

=
(

λ5 + λ4 + (λ1 + λ2)λ3 (λ5 + λ4)(λ1 + λ2) + 1
2 (λ1 + λ2)

2λ3

λ3(λ5 + λ4) + 1
2 (λ1 + λ2)λ

2
3

1
2 (λ5 + λ4)

2 + (λ1 + λ2)λ3(λ5 + λ4) + 1
4 (λ1 + λ2)

2λ2
3

)
.

The command “CorMf(A, λ,b)” provides the correlation matrix for the Xi ’s subject to Ax = b and
assuming that the parameters are λ. For the matrix A considered here we obtain, for example with
λ = (1,1,1,1,1) and b = (5,5), the following result:

⎛
⎜⎜⎜⎜⎝

1.0 −.3647053019 .5636021195 −.2407443460 −.2407443460

−.3647053019 1.0 .5636021195 −.2407443460 −.2407443460

.5636021195 .5636021195 1.0 −.4271530174 −.4271530174

−.2407443460 −.2407443460 −.4271530174 1.0 −.6350805992

−.2407443460 −.2407443460 −.4271530174 −.6350805992 1.0

⎞
⎟⎟⎟⎟⎠ .

Note the negative entry for the correlation between X1 and X2. This corresponds to the fact that
Y2 = X1 + X2 + X4 + X5 = 5, so increases in X1 should be expected to result in decreases in X2.
Similar interpretations apply to the other entries.

5.5. A two-row example with six columns

Let

A =
(

1 0 1 0 1 1
0 1 1 1 0 1

)
. (7)

The “RecsV(A, λ,b)” command provides the following two-dimensional recurrence:
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F0(b1 + 2,b2) = −λ3 + λ6 − λ5λ4 − λ5λ2 + b1λ3 + b1λ6 − λ1λ4 − λ1λ2 − b2λ3 − b2λ6

(λ4 + λ2)(2 + b1)

× F0(b1 + 1,b2)

+ (λ3 + λ6)(λ5 + λ1)

(λ4 + λ2)(2 + b1)
F0(b1,b2)

on b1, and

F0(b1,b2 + 2) = b1λ6 + b1λ3 − b2λ6 − b2λ3 + λ1λ4 + λ5λ4 + λ1λ2 + λ5λ2 − λ6 − λ3

(b2 + 2)(λ5 + λ1)

× F0(b1,b2 + 1)

+ (λ3 + λ6)(λ4 + λ2)/(b2 + 2)(λ5 + λ1)F0(b1,b2)

on b2, with the initial conditions:

F0(1,2) = λ3 + λ6 + (λ4 + λ2)(λ5 + λ1),

F0(2,2) = (λ3 + λ6)(λ4 + λ2) + 1

2
(λ4 + λ2)

2(λ5 + λ1),

F0(1,1) = (λ5 + λ1)(λ3 + λ6) + 1

2
(λ4 + λ2)(λ5 + λ1)

2,

F0(2,1) = 1

2
(λ3 + λ6)

2 + (λ4 + λ2)(λ5 + λ1)(λ3 + λ6) + 1

4
(λ4 + λ2)

2(λ5 + λ1)
2.

5.6. A three-row example

Let

A =
( 0 0 1 0 1 0

0 0 0 1 0 1
1 1 0 0 1 1

)
. (8)

The “RecsV(A, λ,b)” command provides the following two-dimensional recurrence:

F (b1 + 2,b2) = −−b2λ6 − b2λ3 − λ1λ2 − λ1λ4 − λ5λ2 − λ5λ4 + b1λ6 + b1λ3 + λ6 + λ3

(λ2 + λ4)(2 + b1)

× F (b1 + 1,b2)

+ (λ6 + λ3)(λ1 + λ5)

(λ2 + λ4)(2 + b1)
F (b1,b2)

on b1, and

F (b1,b2 + 2) = b1λ3 + b1λ6 − λ3 − λ6 + λ1λ2 + λ5λ2 + λ1λ4 + λ5λ4 − b2λ3 − b2λ6

(b2 + 2)(λ1 + λ5)
F (b1,b2 + 1)

+ (λ6 + λ3)(λ2 + λ4)

(b2 + 2)(λ1 + λ5)
F (b1,b2)

on b2, with the initial conditions:
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F0(1,2) = λ6 + λ3 + (λ2 + λ4)(λ1 + λ5),

F0(2,2) = (λ6 + λ3)(λ2 + λ4) + (1/2)(λ2 + λ4)
2(λ1 + λ5),

F0(1,1) = (λ1 + λ5)(λ6 + λ3) + (
1/2(λ2 + λ4)

)
(λ1 + λ5)

2,

F0(2,1) = (1/2)(λ6 + λ3)
2 + (λ2 + λ4)(λ1 + λ5)(λ6 + λ3) + (1/4)(λ2 + λ4)

2(λ1 + λ5)
2.

5.7. A four-row example

Let

A =
⎛
⎜⎝

1 0 0 0 1 1 0 0
0 1 0 0 1 0 0 1
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

⎞
⎟⎠ . (9)

For 4-row matrices as this one, the package MVPoisson is not able to return recurrences in a rea-
sonable amount of time. However, one can now use the generating functions directly to compute the
relevant quantities of interest, except that it is no longer possible to treat large inputs.

The command “SipurD” is used to generate averages and variances (“SipurD2f” implements a more
efficient algorithm specifically for matrices with two rows). For the matrix A in (9) and, for ex-
ample, λ = (1,1,1,1,1,1,1,1) we obtain that E[X1 | Y = b] ≈ 1.897 when b = (10,10,10,10) and
≈ 2.813 when b = (20,20,20,20) (the value may be obtained to arbitrary precision), and that the
variance of X1 conditioned on this same b is ≈ 1.112 when b = (10,10,10,10) and ≈ 1.379 when
b = (20,20,20,20). The program also guesses asymptotic formulas for these quantities as a function
of the entries of b, and as such is a useful tool in research, suggesting possible general formulas that
one could attempt to prove.

6. Biochemical applications

We now explain how the problem studied here arises in the context of systems described by
chemical network theory, and in particular chemical kinetics. There are two fundamentally different
ways to mathematically model chemical reactions. One of them is based on differential equations
modeling, and the other one on stochastic models. Our problem arises from this second approach.
However, to understand its interest, it is important to first discuss the differential equation case. Dif-
ferential equation models are useful when the number of molecules is very large, so that a continuous
approximation is appropriate.

Suppose that n “species” interact through a network of reactions. The term species is used to refer
to the elementary objects participating in the interactions: in molecular biology, these are typically
ions, atoms, or molecules; in population biology and ecology, they may represent distinct animal
or plant populations, particular age groups, and so forth. It is natural to describe such a network
by a system of n differential equations which constrains the time evolution of the populations (or
concentrations) of the various species. These sets of differential equations take the following general
form:

ẋ = Γ R(x)

(dot indicates time derivative) where x = x(t) is an n-vector of species numbers (non-negative real
numbers) and Γ is an n × m matrix, called the “stoichiometry” matrix, whose columns describe how
many units of each species are created or destroyed by each of m possible reactions. The compo-
nents of the m-vector R(x) quantify the reaction rates for each of the m reactions, as a function of
the current populations as well as parameters (reaction constants) that reflect physical and chemical
information.
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Chemical reactions are often described by graphs whose nodes are the “complexes” (the species,
or combinations of species, that participate in the reactions) and whose edges are labeled by reaction
rate information. Often, a mass-action kinetics model is used, which means that the reaction rate is
proportional to the product of the populations of the reactants, and only the proportionality constant,
called the kinetic constant associated to the corresponding reaction, is displayed on an edge. There is
a systematic and simple way to map graph descriptions to differential equations.

Some of the main results in chemical network theory were obtained by Horn, Jackson, and Feinberg
(see [7,8] and also [14] for an exposition using a somewhat different formalism). These results guar-
antee that solutions of the system of differential equations are well-behaved (stability of equilibria,
uniqueness of equilibria modulo stoichiometric constraints), provided that certain structural properties
are satisfied by the network. The main such theorem is valid for what are called complex balanced
networks. A sufficient (though not necessary) condition for complex balancing is that the network be
“weakly reversible” and have “deficiency zero”. The deficiency is computed as c − 	 − r, where c is
the number of complexes, r is the rank of the matrix Γ , and 	 is the number of “linkage classes”
(connected components of the reaction graph). Weak reversibility means that each connected compo-
nent of the reaction graph must be strongly connected. We refer the reader to the citations for details
on deficiency theory. Our examples are all complex balanced.

When the numbers of molecules are very small, as is sometimes the case in molecular biology,
a discrete stochastic model may be more appropriate than a continuous differential equation model.
Indeed, fluctuations cannot be ignored when dealing with genes (usually one or two copies), mRNA’s
(in the tens), ribosomes and RNA polymerases (up to hundreds) or certain proteins that are at low
numbers.

Stochastic models fully account for the probabilistic nature of reactions. The number of individual
copies of each species at (continuous) time t is viewed as a random process Xi(t), i = 1, . . . ,n. The
Chemical Master Equation (CME), which is the differential form of the Chapman–Kolmogorov forward
equation, is a linear first-order differential equation that describes the time evolution of the joint
probability distribution of the Xi(t)’s. Often, the interest is in long-time behavior, after a transient,
that is to say in the probabilistic steady state of the system: the joint distribution of the random vari-
ables Xi = Xi(∞) that result in the limit as t → ∞ (provided that such a limit exists in an appropriate
technical sense). This joint distribution is a solution of the steady state CME (ssCME), the infinite set
of linear equations obtained by setting the right-hand side of the CME to zero.

A very beautiful recent observation in [2] is that the complex balancing condition, introduced orig-
inally for deterministic differential equation models, is equivalent to the “nonlinear traffic equations”
from queuing theory, described in Kelly’s textbook [11], Chapter 8 (see also [12] for a discussion),
which in turn guarantees that there is a solution π of the ssCME that is formally the joint distri-
bution of n (the number of species) independent Poisson random variables. One associates to each
deterministic steady state x̄ ∈ R

n
�0 (that is, Γ R(x̄) = 0, in other words, a zero of the vector field

Γ R(x)), a vector π that is a solution of the ssCME. The vector π is indexed by the n-dimensional lat-
tice of non-negative integers, N = (N1, . . . , Nn) ∈ Z

n
�0. We write the Nth entry of π as P (N) (thought

of as the probability, in steady state, of the event (X1, X2, . . . , Xn) = (N1, . . . , Nn)). Let us write the
product x̄N1

1 · · · x̄Nn
n as “x̄N ” and N1! · · · Nn! as “N!”. Then, the assertion is that the vector π whose

components are

P (N) = x̄N

N!
(as well as any scalar multiple of this vector) is a solution of the ssCME. We provide a self-contained
proof of this fact in Appendix A to this paper.

However, the existence of this product form distribution does not mean that the joint distribution
of the variables Xi will be independent Poisson, because the solution of the ssCME is not, in general,
unique. The lack of uniqueness stems from conservation laws. Because of possible conservation laws,
things are a bit subtle.

As an example, suppose that two molecules of species A and B can reversibly combine through
a bimolecular reaction to produce a molecule of species C : A + B ↔ C . Let us denote the number of
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molecules of species A, B , and C at time t by Xi(t), i = 1,2,3, respectively. The count of A molecules
goes down by one every time that a reaction takes place, at which time the count of C molecules
goes up by one. Thus, the sum of the number of A molecules plus the number of C molecules re-
mains constant: X1(t) + X3(t) = b1. Similarly, X2(t) + X3(t) = b2, because the total count of B and C
molecules is also constant. This holds for all t , so taking limits as t → ∞ (ignoring technicalities!), we
have that, for the steady state random variables, still X1 + X3 = b1 and X2 + X3 = b2. Let us introduce
Y1 = X1 + X3 and Y2 = X2 + X3. Thus, depending on the initial conditions b1 = X1(0) + X3(0) and
b2 = X2(0) + X3(0), the limiting distribution will be that of X1 and X2 conditioned on Y1 = b1 and
Y2 = b2. Once we collect this information into a matrix A, in this case

A =
(

1 0 1
0 1 1

)
,

we are back to the situation where we want to study the behavior of the conditioned variables Xi | Y j ,
where the Xi ’s are Poisson distributed.1

The rest of this section discusses various examples. To make the notations compatible with usage
in probability theory, we use “λ” for the Poisson rates (instead of x̄i ) and k for multi-indices (instead
of N).

6.1. A simple reversible reaction

Consider the following reaction:

X1
k1�
k2

X2 (10)

in which one molecule of substance X1 reversibly transforms to X2.
This reaction system is complex-balanced, because it is weakly reversible and it has 2 complexes,

1 strongly connected component, and rank 1, and hence deficiency zero.
The steady states of this reaction network are given by the solutions λ = (λ1, λ2) of the equation

k1λ1 = k2λ2. We may pick, for example, λ = (1,k1/k2).
Every time that the forward reaction takes place, the count of molecules of X1 decreases by one

and the count of molecules of X2 increases by one; the converse happens for the backward reaction.
Thus, the total number of molecules of X1 and X2 remains constant. The corresponding A matrix is
given in (3).

6.2. A bimolecular reaction

Consider the following reaction:

X1 + X2
k1�
k2

X3 (11)

in which one molecule of X1 combines reversibly with one molecule of X2 in order to produce one
molecule of X3.

This reaction system is complex-balanced, because it is weakly reversible and it has 2 complexes,
1 strongly connected component, and rank 1, and hence deficiency zero.

1 Our discussion is incomplete from a probabilistic viewpoint, as we have not addressed questions of uniqueness and con-
vergence. These questions require a careful study of irreducibility properties of the associated Markov chains. We are only
interested here in the computational problem of obtaining statistics for the conditioned variables.
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The steady states of this reaction network are given by the solutions λ = (λ1, λ2, λ3) of the equa-
tion

k1λ1λ2 = k2λ3.

We may pick, for example, λ = (1,1,k1/k2).
Every time that the forward reaction takes place, the counts of molecules of X1 and X2 decreases

by one and the count of molecules of X3 increases by one; the converse happens for the backward re-
action. Thus, the total number of molecules of X1 and X3 remains constant, as does the total number
of molecules of X2 and X3. The matrix A is as in (4).

6.3. A more interesting bimolecular reaction

Consider the following reaction:

2X1 + X2
k1�
k2

2X3 (12)

which may represent, when X1 = H2, X2 = O 2, and X3 = H2 O , the reversible creation of a molecule
of water, when two molecules of the diatomic hydrogen gas combine with one molecule of the di-
atomic oxygen gas to produce two molecules of water. (The forward reaction produces energy, and the
reverse reaction, breaking water to form hydrogen and oxygen, requires energy, for instance through
electrolysis. The chemical reaction formalism used here does not account for energy production or
consumption.)

This reaction system is complex-balanced, because it is weakly reversible and it has 2 complexes,
1 strongly connected component, and rank 1, and hence deficiency zero.

The steady states of this reaction network are given by the solutions λ = (λ1, λ2, λ3) of the equa-
tion

k1λ
2
1λ2 = k2λ

2
3.

We may pick, for example, λ = (1,1,
√

k1/k2 ).
The total sum of hydrogen and water molecules remains constant, and for each two molecules of

oxygen there is one of water produced and vice versa. The matrix A is as in (5).

6.4. A receptor–ligand model

Receptor–ligand interactions play an important role in the understanding of the biochemical mech-
anisms that initiate cellular signaling, and their study is central to pharmacology. A “two-state” model
for such interactions studied in [5] is shown, pictorially, in Fig. 2.

Fig. 2. A two-state receptor–ligand network.



Author's personal copy

E.D. Sontag, D. Zeilberger / Advances in Applied Mathematics 44 (2010) 359–377 373

Fig. 3. A two-component signaling system.

The species participating in this reaction are: R1 and R2, which represent the free receptors in an
inactive and active conformational state respectively, the free ligand L, and the respective receptor–
ligand complexes C1 = R1L and C2 = R2L.

The steady-states λ = (λ1, λ2, λ3, λ4, λ5) = (R1, R2, L, C1, C2) of this system must satisfy the fol-
lowing polynomial equations:

−(k21 + k31)R1L + k12C1 + k13 R2L = 0,

−(k13 + k43)R2L + k31 R1L + k34C2 = 0,

−k21 R1L − k43 R2L + k12C1 + k34C2 = 0,

−(k12 + k42)C1 + k21 R1L + k24C2 = 0,

−(k34 + k24)C2 + k42C1 + k43 R2L = 0.

For example, when all kinetic constants are ki = 1 (this is not a realistic biological choice of constants,
but is picked simply for illustration), then λ = (1,1,1,1,1) is a steady-state.

This reaction system is complex-balanced, because it is weakly reversible and it has 4 complexes,
1 strongly connected component, and rank 3, and hence deficiency zero.

The conservation of L + C1 + C2 (total amount of ligand) and R1 + R2 + C1 + C2 (total amount of
receptors) leads to the matrix in (6).

6.5. A two-component signaling system in bacteria

The next example is from [4]. It models the “EnvZ/OmpR system” in E. coli bacteria. This system
regulates the production of certain transport proteins (porins OmpF and OmpC) which act as pores
allowing molecules to diffuse through the cell membrane. The system includes a kinase, EnvZ, which
phosphorylates and dephosphorylates the response regulator OmpR, and is a particularly well-studied
“two-component signaling system” in bacteria. The model is shown, pictorially, in Fig. 3, where, for
simplicity, we omit labeling each arrow by a reaction constant. We are using the following short-hand
notations for the respective notations in [4]: X1 = R = OmpR, X2 = ZP = EnvZ-P (phosphorylated
form), X3 = ERP = (EnvZ-P)OmpR (complex), X4 = Z = EnvZ, X5 = RP = OmpR-P (phosphorylated
form), and X6 = EPR = (EnvZ)OmpR-P (complex).

This reaction system is complex-balanced, because it is weakly reversible and it has 5 complexes,
1 strongly connected component, and rank 4, and hence deficiency zero.

With all reaction constants equal to one, λ = (1,1,1,1,1,1) is a steady state.
The system is described by six differential equations, subject to two constraints. These constraints

reflect that the total amount of each of OmpR and EnvZ should stay constant, respectively, and give
the rows of the A matrix for this example as that shown in (7).

6.6. A receptor antagonist model

The paper [10] analyzes a model involving the cytokine Interleukin-1 (IL-1), which is produced in
response to inflammatory stimuli. The species in the model are IL-1 (denoted as L for “ligand”), the
IL-1 receptor (denoted by R), the human IL-1 receptor antagonist (denoted by A), a decoy receptor or
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“trap” (denoted by T) which, by binding to the ligand, helps block IL-1 signaling, and the four possible
dimers RL, RA, AT, and LT. The model consists of four reversible reactions:

R + L
k2�
k1

RL,

R + A
k4�
k3

RA,

A + T
k6�
k5

AT,

L + T
k8�
k7

LT.

This reaction system is complex-balanced, because it is weakly reversible and it has 8 complexes,
4 strongly connected components, and rank 4, and hence deficiency zero.

The total amounts of R, L, A, and T are conserved, giving rise to a matrix A with 4 rows. Ordering
the states as follows: R, L, A, T, RL, RA, AT, LT, the resulting matrix is as in (9).

6.7. A futile-cycle example

We now describe an example that motivates looking at a matrix A as in (8). In contrast to the
previous examples, however, this one is not complex-balanced and thus does not fit the assumptions
for the ssCME having a solution in product form. So the interest in the conditional statistics problem
for Poisson variables is purely academic for this particular example. Nonetheless, it is worth seeing
how such a matrix A arises.

“Futile cycles” involving phosphorylation and dephosphorylation are ubiquitous in molecular bi-
ology (see for example [15] for more discussion and references). In such processes, an enzyme E
(a kinase) catalizes the transformation of a substrate S into a product P , passing through one or
more intermediate complexes C . A different enzyme F (a phosphotase) catalizes the transformation
of P back into S , also passing through one or mode intermediate complexes. The simplest model (just
one intermediate) for such a reaction is as follows:

E + S
k1�
k2

C
k3�
k4

E + P ,

F + P
k5�
k4

D
k7�
k8

F + S,

in which we used C and D to denote the intermediate complexes. (Usually, the backward reactions
to complex dissociation, labeled by k4 and k8, are not included in the model, since they are energeti-
cally very unfavorable.) This system has deficiency one (6 complexes, two classes, and rank 3). Thus,
the basic deficiency zero theory does not apply. Interestingly, however, a variation, “deficiency one
theory”, can be used to predict the existence of multiple steady states for this system; see [6].

There are three conservation laws, corresponding to the conservation of total kinase, phosphotase,
and substrate/product. Ordering the variables as S, P , E, F , C, D , we obtain the matrix A as in (8).

Appendix A

For completeness, we show here that complex balanced reactions admit product form equilibrium
densities for their Chemical Master Equations. The proof is basically that in [2,11,12].
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Setup

A chemical reaction network is specified by:
R = {1, . . . ,m}, the set of reactions.
C ⊆ R

n
�0, a finite set of complexes.

Example: if there are two reactions 1 : A + B → C + D and 2 : 2A + C → B , then the set C will have
four elements, listing the species participating in each: (1,1,0,0), (0,0,1,1), (2,0,1,0), (0,1,0,0).

S, T : R → C are the source and target functions that describe which are the reactant and product
complexes, respectively.

Example: with the above reactions, S(1) = (1,1,0,0), T (1) = (0,0,1,1), S(2) = (2,0,1,0), T (2) =
(0,1,0,0).

We make the following notational convention: for vectors x, c ∈ R
n
�0, xc := xc1

1 · · · xcn
n (with 00 = 1),

and for nonnegative integer vectors N = (N1, . . . , Nn), N! := N1! · · · Nn!.
By definition, a vector π = (P (N), N ∈ Z

n
�0) is a steady-state solution of the Chemical Master

Equation associated to a given reaction network if it satisfies:

∑
i∈R

P
(
N − T (i) + S(i)

)
Ai

(
N − T (i) + S(i)

) =
∑
i∈R

P (N)Ai(N) (13)

for each N ∈ Z
n
�0, where Ai(N) is the ith “propensity function” [9]: Ai(N)dt is the probability that

reaction i will occur in a small time interval [t, t + dt] if the state of the system is N at time t . This
function is proportional to the number of ways in which the N molecules can combine to form the
ith complex:

Ai(N) = k̃i
N!

(N − S(i))S(i)! = ki
N!

(N − S(i))! .

The constant ki is the same as the deterministic kinetic constant of the respective reaction. (If the
deterministic reaction were to be written in terms of concentrations, or population densities, instead
of numbers of individuals, then a volume-dependent correction factor must be used, but this would
not change results in any manner.)

A complex balanced steady state (CBSS) with respect to the given network and kinetic constants k is
an x̄ ∈ R

n
>0 (which is thought of as a vector of species populations) such that the following property

holds for each complex c ∈ C:

∑
i∈T −1(c)

ki x̄
S(i) =

∑
i∈S−1(c)

ki x̄
S(i) (14)

(note that one can equally well write “x̄c” and bring this term outside of the sum, in the right-hand
side).

Complex balancing means that each “complex” is balanced in inflow and outflow. This is a Kirch-
hoff current law (in-flux = out-flux, at each node) when one writes a chemical network.

A counter-example to complex-balancing is this reaction network:

A
k1→ B, 2B

k2→ 2A

(or, if one prefers reversible reactions, one may take instead an example due to Wegsheider, A ↔ B
and 2A ↔ B). In steady state, k1a − 2k2b2 = 0. But complex-balancing would require that the outflow
of “A” be zero (since there are no inflows into the “complex” A), which means k1a = 0, and misses
the nonzero steady states. (One could also argue with the complex 2A, or with B , or with 2B .)

A complex-balanced system is one with the property that every steady state is complex balanced.
This concept was studied in detail by Horn and Jackson and by Feinberg in the early 1970s. Feinberg
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[7,8] showed that for a special type of system (weakly reversible and deficiency zero), for any kinetic
constants there is a steady state x̄ ∈ R

n
>0 satisfying (14) (and, in fact, every steady state is complex

balanced, that is, the system is complex balanced).

The Key Lemma. Suppose that x̄ is a complex balanced equilibrium, that is, it satisfies (14). Take any function
α : C → R on complexes. Then:

∑
i∈R

ki x̄
S(i)−T (i)α

(
T (i)

) =
∑
i∈R

kiα
(

S(i)
)
. (15)

Proof. Since

∑
i∈R

=
∑
c∈C

∑
i∈T −1(c)

and
∑
i∈R

=
∑
c∈C

∑
i∈S−1(c)

it is enough to show that, for each fixed c:

∑
i∈T −1(c)

ki x̄
S(i)−cα

(
T (i)

) =
∑

i∈S−1(c)

kiα
(

S(i)
)
.

Since T (i) = c and S(i) = c in the left-hand side and right-hand side respectively, this is the same as
the CBSS condition upon multiplication by x̄−cα(c). �
Corollary. The vector Π with

P (N) = x̄N

N!
is a steady state solution of the CME.

Proof. Obvious using α(c) = x̄N

(N−c)! , for each N ∈ Z
n
�0. �
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