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Dedicated to Amitai Regev (b. Dec. 7, 1940)

Amitai Regev and Integrals and Sums

Superficially, this article, dedicated with friendship and admiration to Amitai Regev, has nothing
to do with either Polynomial Identity Rings, Representation Theory, or Young tableaux, to all of
which he made so many outstanding contributions. But anyone who knows even a little about Ami-
tai Regev’s remarkable and versatile research, would know that both sums (and multi-sums!), and
especially integrals (and multi-integrals!) show up very frequently, e.g. see [R], where one of us (DZ)
collaborated in the apppendix that consisted in an explicit evaluation of a certain multi-integral.
We should also mention that back in the early eighties, Amitai, together with William Beckner
[BR], deduced the then wide-open Macdonald-Mehta conjecture for the classical root systems B-D
from Selberg’s integral, a fact that was acknowledged in [M] (albeit with characteristic Macdonal-
dian understatement). Hence, it is clear that sums, multisums, integrals, and multi-integrals, are
Amitai’s bread and butter, and also cup of tea, so the present work has the potential to help him
in his future research.

A Multi-Variable Zeilberger Algorithm

Notation. For k integer, (z)k := z(z + 1) . . . (z + k − 1), if k ≥ 0 and (z)k := 1/(z + k)−k if
k < 0. In order to avoid too many subscripts in this article, we will denote (z)k by RF (z , k). For
any polynomial in (k1, . . . , kr) and possibly other variables, deg(f) denotes the total degree w.r.t.
(k1, . . . , kr).

Theorem mZ. Let

F (n; k1, . . . , kr) = POL(n; k1, . . . , kr) ·H(n; k1, . . . , kr) , (MultiProperHypergeometric)

where POL(n; k1, . . . , kr) is a polynomial in (n, k1, . . . , kr) and

H(n; k1, . . . , kr) =

∏A
j=1RF (a′′j , a

′
jn+

∑r
i=1 ajiki)∏C

j=1RF (c′′j , c
′
jn+

∑r
i=1 cjiki)

r∏
i=1

zkii , (MultiPureHypergeometric)
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where the a′j , c
′
j are non-negative integers and the aji, cji are integers, while a′′j , c

′′
j and z1, . . . , zr

are commuting indeterminates. Then there exists an integer L, to be explicitly constructed in the
course of the proof, and there exist polynomials in n, e0(n), e1(n), . . . , eL(n), not all zero, and there
also exist r rational functions of (n, k1, . . . , kr), Ri(n; k1, . . . , kr) (i = 1, . . . , r), such that

Gi(n; k1, . . . , kr) := Ri(n; k1, . . . , kr)F (n; k1, . . . , kr)

satisfy

L∑
i=0

ei(n)F (n+i, k) =
r∑
i=1

[Gi(n; k1, . . . , ki−1, ki+1, ki+1, . . . , kr)−Gi(n; k1, . . . , kr)] . (WZtuple)

Proof. Let

H(n; k1, . . . , kr) =

∏A
j=1RF (a′′j , a

′
jn+

∑r
i=1 ajiki)∏C

j=1RF (c′′j , c
′
j(n+ L) +

∑r
i=1 cjiki)

r∏
i=1

zkii ,

and for i = 1, . . . , r,

fi(k1, . . . , kr) =
∏

1≤j≤A
aji>0

RF (a′jn+a′′j+
r∑
i=1

ajiki , aji)
∏

1≤j≤C
cji<0

RF (c′j(n+L)+c′′j+cji+
r∑
i=1

cjiki , −cji) ,

and

gi(k1, . . . , kr) =
∏

1≤j≤A
aji<0

RF (a′jn+a′′j+aji+
r∑
i=1

ajiki , −aji)
∏

1≤j≤C
cji>0

RF (c′j(n+L)+c′′j+
r∑
i=1

cjiki , cji) .

Note that
H(n; k1, . . . , ki−1, ki + 1, ki+1, · · · , kr)

H(n; k1, . . . , kr)
=
fi(k1, . . . , kr)
gi(k1, . . . , kr)

zi .

Write

Gi(n, k) := gi(k1, . . . , ki−1, ki − 1, ki+1, . . . , kr) ·Xi(k1, . . . , kr) ·H(n; k1, . . . , kr) · (Ansatz)

Substituting into (WZtuple) and dividing both sides by H(n; k1, . . . , kr), shows that it is equivalent
to

r∑
i=1

[zi·fi(k1, . . . , kr)Xi(k1, . . . , ki−1, ki+1, ki+1, . . . , kr)−gi(k1, . . . , ki−1, ki−1, ki+1, . . . , kr)Xi(k1, . . . , kr)]

−h(k1, . . . , kr) = 0 , (MultiGosper)

where

h(k1, . . . , kr) :=
L∑
i=0

ei(n)POL(n+ i; k1, . . . , kr) ·
H(n+ i; k1, . . . , kr)
H(n; k1, . . . , kr)

.
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Note that h(k1, . . . , kr) is a polynomial since

H(n+ i; k1, . . . , kr)
H(n; k1, . . . , kr)

=
A∏
j=1

RF (a′′j+a′jn+
r∑
i=1

ajiki , ia
′
j)

C∏
j=1

RF (c′′j+c′j(n+i)+
r∑
i=1

cjiki , (L−i)c′j) .

Now write each of the Xi’s in generic form, with undetermined coefficients, as polynomials in
k1, . . . , kr of degree M := deg(h) − max({deg(fi), deg(gi)}). Plug them all into (MultiGosper),
expand this gigantic polynomial of k1, . . . , kr, and equate all the coefficients to zero, getting a huge
system of linear homogeneous equations whose unknowns are the ei(n)’s and the coefficients
of the Xi’s. There are r

(
M+r
r

)
+L+1 unknowns and

(
deg(h)+r

r

)
equations. In order to guarantee a

not-all-zero solution we must insist that #unknowns>#equations. So choose L to be the smallest
integer such that

r

(
M + r

r

)
+ L+ 1 >

(
deg(h) + r

r

)
,

in other words

L ≥
(
deg(h) + r

r

)
− r
(
M + r

r

)
.

We will now show that such an L exists. Indeed,

deg(h) = deg(POL) + L ·max(
A∑
j=1

a′j ,
C∑
j=1

c′j) = b0 + b1L ,

for some specific positive integers b0, b1. Also

b2 := max({deg(fi), deg(gi)})

is some specific positive integer (independent of L). We need to find an L such that

r

(
b0 + b1L− b2 + r

r

)
−
(
b0 + b1L+ r

r

)
+ L ≥ 0 .

For r = 1 we get that L = b2 will do, and for r > 1 the left side is a polynomial of L of degree r
with a leading coefficient that is positive, hence tends to ∞ when L → ∞, Hence the inequality
holds for sufficiently large L, and the smallest such L is our desired (sharp!) upper bound.

However, so far, we only ruled out the scenario that all the ei(n)’s and all the Xi’s are all equal
to 0. Can it happen that all the ei(n)’s are equal to 0? No way! We are doing things generically,
in particular with generic zi’s, and if all the ei(n)’s are zero, they would have to be identically zero
as a function of the zi’s and all the other generic (symbolic) parameters a′′j etc. In particular if we
make all the zi’s zero except for a single one, reducing the multi-sum to a single sum, then all the
ei(n)’s would still have to be identically zero. This scenario has been ruled out in [MZ]. .

Remark 1. The condition that the a′j ’s and c′j ’s are non-negative integers is w.l.o.g., since one can
obtain an equivalent summand with these properties by shadowing (see [MZ]).
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Remark 2. Theorem mZ is both of theoretical and practical interest. The former because it
considerably improves the upper bound for the order of the recurrence established in [WZ]. The
latter since it gives an efficient algorithm for computing recurrences, superseding the ad-hoc pseudo
algorithm that accompanied [WZ].

Remark 3. In specific situations (as opposed to the generic case), one may be able to get a smaller
L, by taking the Xi’s to be rational functions, rather than mere polynomials. This is implemented
in the Maple package MultiZeilbergerDen, where the user is allowed to pick the denominators.

A Multi-Variable q-Zeilberger Algorithm

q-Notation. For k integer, [a]k := (1−qa)(1−qa+1) · · · (1−qa+k−1), if k ≥ 0 and [a]k := 1/[a+k]−k
if k < 0. In order to avoid too many subscripts, we will denote [a]k by qRF (a , k).

Theorem qmZ. Let

F (n; k1, . . . , kr) = POL(n; k1, . . . , kr) ·H(n; k1, . . . , kr) , (qMultiProperHypergeometric)

where POL(n; k1, . . . , kr) is a Laurent polynomial in (qn, qk1 , . . . , qkr ), and

H(n; k1, . . . , kr) =

∏A
j=1 qRF (a′′j , a

′
jn+

∑r
i=1 ajiki)∏C

j=1 qRF (c′′j , c
′
jn+

∑r
i=1 cjiki)

· qQ(n;k1,...,kr) ·
r∏
i=1

zkii ,

(qMultiPureHypergeometric)
where the a′j , c

′
j are non-negative integers and the aji, cji are integers, while a′′j , c

′′
j and z1, . . . , zr are

commuting indeterminates, and Q(n; k1, . . . , kr) is a quadratic form in (n, k1, . . . , kr). Then there
exists an integer L, to be explicitly constructed in the course of the proof, and there exist L+1 poly-
nomials in qn, e0(qn), e1(qn), . . . , eL(qn), not all zero, and r rational functions of (qn, qk1 , . . . , qkr ),
Ri(n; k1, . . . , kr) (i = 1, . . . , r) such that

Gi(n; k1, . . . , kr) := Ri(n; k1, . . . , kr)F (n; k1, . . . , kr)

satisfy

L∑
i=0

ei(qn)F (n+ i, k) =
r∑
i=1

[Gi(n; k1, . . . , ki−1, ki + 1, ki+1, . . . , kr)−Gi(n; k1, . . . , kr)] .

(qWZtuple)

Plan of Proof: q-analogize the proof of Theorem mZ, in the same way as it was carried out for
the single-sum case in [MZ].

Remark 4. In many cases one can get a lower order, L, for the recurrence satisfied by the sum
a(n) :=

∑
k F (n; k) , by replacing F (n; k) , by its Paule Symmetrization [P] (adapted to many

variables).
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Sharp Upper Bounds for the Almkvist-Zeilberger Algorithm

This section is a discrete-continuous analog of [MZ]. It simplifies (part of) [AZ], and provides a
sharp upper bound for the order of the outputted recurrence.

Notation. If f is function of the continuous variable x (among possibly other continuous and/or
discrete variables), then Dxf denotes the derivative of f with respect to x, in other words Dxf :=
∂f
∂x .

Theorem AZ. Let

F (n, x) = POL(n, x) ·H(n, x) , (DiscreteContHypergeometric)

where POL(n, x) is a polynomial of (n, x), and

H(n, x) = ea(x)/b(x) ·

(
P∏
p=1

Sp(x)αp
)
·
(
s(x)
t(x)

)n
, (PureDiscreteContHypergeometric)

where a(x), b(x), s(x), t(x) and Sp(x) (1 ≤ p ≤ P ) are polynomials of x, while the αp’s are commut-
ing indeterminates. Let

L = deg(b) + deg(s) + deg(t) +

(
P∑
p=1

deg(Sp)

)
+max(deg(a), deg(b))− 1 ,

then there exist L+1 polynomials in n, e0(n), e1(n), . . . , eL(n), not all zero, and a rational function
R(n, x) such that G(n, x) := R(n, x)F (n, x) satisfies

L∑
i=0

ei(n)F (n+ i, x) = DxG(n, x) . (GertDoron)

If F (n, α) = 0 and F (n, β) = 0 (and hence G(n, α) = 0 and G(n, β) = 0), it follows, by integrating
from x = α to x = β that

a(n) :=
∫ β

α

F (n, x)dx ,

satisfies the linear recurrence equation with polynomial coefficients

L∑
i=0

ei(n)a(n+ i) = 0 .

Proof: Let L, for now, be any non-negative integer. Let

H(n, x) = ea(x)/b(x) ·

(
P∏
p=1

Sp(x)αp
)
· s(x)n

t(x)n+L
.

We have
L∑
i=0

ei(n)F (n+ i, x) = h(x) ·H(n, x) ,
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where

h(x) :=
L∑
i=0

ei(n)POL(n+ i, x)s(x)it(x)L−i .

Let q(x) and r(x) be the numerator and denominator, respectively, of the logarithmic derivative of
H(n, x), i.e.

DxH(n, x)
H(n, x)

=
q(x)
r(x)

.

Write
G(n, x) = H(n, x) · r(x) ·X(x) , (Ansatz)

where X(x) is a polynomial to be determined. Now (GertDoron) is equivalent to

(r′(x) + q(x)) ·X(x) + r(x)X ′(x) = h(x) . (ContGosper)

Let M := deg(h)−max(deg(r′ + q), deg(r)− 1), and write X(x) as a polynomial in x of degree M
with undetermined coefficients. Plugging this into (ContGosper), and equating coefficients, results
in deg(h) + 1 equations for L+M + 2 unknowns. In order to guarantee a solution, we need

L+M + 2 > deg(h) + 1 ,

in other words
(L+M + 2)− (deg(h) + 1) ≥ 0 ,

in other words,
L ≥ max(deg(r′ + q), deg(r)− 1) .

We leave it to the reader to verify that the expression on the right is indeed

L = deg(b) + deg(s) + deg(t) +

(
P∑
p=1

deg(Sp)

)
+max(deg(a), deg(b))− 1 .

A Multi-Variable Almkvist-Zeilberger Algorithm

The above theorem, and algorithm, can be extended to many variables as follows.

Theorem mAZ. Let

F (n;x1, . . . , xd) = POL(n;x1, . . . , xd) ·H(n;x1, . . . , xd) ,

(MultiDiscreteContHypergeometric)
where POL(n;x1, . . . , xd) is a polynomial of (n, x1, . . . , xd), and

H(n;x1, . . . , xd) = ea(x1,...,xd)/b(x1,...,xd) ·

(
P∏
p=1

Sp(x1, . . . , xd)
αp

)
·
(
s(x1, . . . , xd)
t(x1, . . . , xd)

)n
,

(PureDiscreteContHypergeometric)
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where a(x1, . . . , xd), b(x1, . . . , xd), s(x1, . . . , xd), t(x1, . . . , xd) and Sp(x1, . . . , xd) (1 ≤ p ≤ P ) are
polynomials of (x1, . . . , xd), while the αp’s are commuting indeterminates. There exists a non-
negative integer L, to be constructed in the proof, and there exist L + 1 polynomials in n,
e0(n), e1(n), . . . , eL(n), not all zero, and there also exist d rational functions Ri(n;x1, . . . , xd)
(i = 1, . . . , d) such that

Gi(n;x1, . . . , xd) := Ri(n;x1, . . . , xd)F (n;x1, . . . , xd)

satisfy

L∑
i=0

ei(n)F (n+ i;x1, . . . , xd) =
d∑
i=1

DxiGi(n;x1, . . . , xd) . (MultiGertDoron)

If F (n;±∞) = 0 (and hence G(n;±∞) = 0) it follows, by integrating over [−∞,∞]d, that

a(n) :=
∫ ∞
−∞

. . .

∫ ∞
−∞

F (n;x1, . . . , xd)dx1 . . . dxd ,

satisfies the linear recurrence equation with polynomial coefficients

L∑
i=0

ei(n)a(n+ i) = 0 .

Sketch of Proof and Algorithm. Let L, for now, be any non-negative integer. Let

H(n;x1, . . . , xd) = ea(x1,...,xd)/b(x1,...,xd) ·

(
P∏
p=1

Sp(x1, . . . , xd)
αp

)
· s(x1, . . . , xd)n

t(x1, . . . , xd)n+L
.

We have
L∑
i=0

ei(n)F (n+ i;x1, . . . , xd) = h(x1, . . . , xd) ·H(n;x1, . . . , xd) ,

where

h(x1, . . . , xd) :=
L∑
i=0

ei(n)POL(n+ i;x1, . . . , xd)s(x1, . . . , xd)it(x1, . . . , xd)L−i .

For i = 1, . . . , d, let qi(x1, . . . , xd) and ri(x1, . . . .xd) be the numerator and denominator, respec-
tively, of the logarithmic derivative of H(n;x1, . . . , xd) w.r.t. xi:

DxiH(n;x1, . . . , xd)
H(n;x1, . . . , xd)

=
qi(x1, . . . , xd)
ri(x1, . . . , xd)

.

Write, for i = 1, . . . , d,

Gi(n;x1, . . . , xd) = H(n;x1, . . . , xd) · ri(x1, . . . , xd) ·Xi(x1, . . . , xd) , (Ansatz)
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where Xi(x1, . . . , xd) are polynomials to be determined. Now (MultiGertDoron) is equivalent to

d∑
i=1

[Dxiri(x1, . . . , xd) + qi(x1, . . . , xd)] ·Xi(x1, . . . , xd) + ri(x1, . . . , xd) ·DxiXi(x1, . . . , xd)

= h(x1, . . . , xd) . (MultiContGosper)

The rest of the proof of the existence of L is analogous to the proof of Theorem mZ, since the degree
of h is of the form “ integer+ (positive integer)·L”, and for sufficiently large L, the number of
unknowns will exceed the number of equations, and we will be guaranteed a solution. Once again,
by genericity, it is not possible for all the ei(n)’s to be zero.

Remark 6. Theorem mAZ sharpens and improves on the work of Akalu Tefera[T], which, in turn,
was a great improvement on the pseudo algorithm for multi-integration that accompanied [WZ].

Remark 7. In many cases in practice, one can reduce the order (L), by replacing (Ansatz) by

Gi(n;x1, . . . , xd) = H(n;x1, . . . , xd) ·Xi(x1, . . . , xd) , (Ansatz′)

in other words, not assuming that Gi/H is divisible by ri. This is how it is done in Mul-

tiAlmkvistZeilberger.

Differential Operators

Theorems cAZ and cmAZ below are analogs of AZ and mAZ that treat the case where the inte-
grand’s arguments are all continuous, including the ‘parameter’ variable that is not being integrated
on. In this case, of course, the output satisfies a linear differential equation with polynomial coef-
ficients. Theorems cAZ and cmAZ are not yet implemented in Maple.

Theorem cAZ. Let

F (x, y) = POL(x, y) ·H(x, y) (PureContHypergeometric)

where POL(x, y) is a polynomial of (x, y), and

H(x, y) = e
a(x,y)
b(x,y) ·

(
P∏
p=1

Sp(x, y)αp
)
, (PureContHypergeometric) ,

where a(x, y), b(x, y) and Sp(x, y) (1 ≤ p ≤ P ) are polynomials of (x, y) while the αp are commuting
indeterminates.

Let

L := deg(b) +
P∑
p=1

deg(Sp) +max(deg(a), deg(b))− 1 .

There exist L + 1 polynomials, e0(x), e0(x), . . . , eL(x), not all zero, and rational function R(x, y)
such that G(x, y) := R(x, y)F (x, y) satisfies
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L∑
i=0

ei(x)Di
xF (x, y) = DxG(x, y), . (ContGertDoron)

If F (x, α) = 0 and F (x, β) = 0 (and hence G(x, α) = 0 and G(x, β) = 0), it follows, by integrating
from y = α to y = β that

a(x) :=
∫ β

α

F (x, y)dy ,

satisfies the linear differential equation with polynomial coefficients

L∑
i=0

ei(x)Di
xa(x) = 0 .

Sketch of the Proof: The proof makes repeated use of Leibnitz rule together with induction. Let

H(x, y) =
e
a(x,y)
b(x,y)

b(x, y)2L
·

(
P∏
p=1

Sp(x, y)αp−L
)
.

We have
L∑
i=0

ei(x)F (x, y) = h(x) ·H(x, y) ,

where h(x) is the expression

L∑
i=0

ai(x)
∑

k1+k2+k3=i
ki≥0

(
i

k1, k2, k3

)
(Dk1

x POL(x, y))

(
P∏
p=1

Sp(x, y)L−k2

)
·Tk2(x, y)·b(x, y)2(L−k3)·mk3(x, y) ,

where mk3(x, y) is a polynomial in (x, y) for which

Dk2
x

(
P∏
p=1

Sp(x, y)αp
)

=

(
P∏
p=1

Sp(x, y)αp−k2

)
· Tk2(x, y) .

and Tk3(x, y) is a polynomial in (x, y) such that

Dk3
x

(
ea(x,y)/b(x,y)

)
=
mk3(x, y)
b(x, y)2k3

ea(x,y)/b(x,y) ,

respectively.

Let q(x) and r(x) be the numerator and denominator, respectively, of the logarithmic derivative of
H(x, y), i.e.

DxH(x, y)
H(x, y)

=
q(x)
r(x)

.
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Write
G(x, y) = H(x, y) · r(x) ·X(x) , (Ansatz)

where X(x) is a polynomial to be determined. Now (ContGertDoron) is equivalent to

(r′(x) + q(x)) ·X(x) + r(x)X ′(x) = h(x) . (ContGosper)

Let M := deg(h)−max(deg(r′ + q), deg(r)− 1), and write X(x) as a polynomial in x of degree M
with undetermined coefficients. Plugging this into (ContGosper), and equating coefficients, results
in deg(h) + 1 equations for L+M + 2 unknowns. In order to guarantee a solution, we need

L+M + 2 > deg(h) + 1 ,

in other words
(L+M + 2)− (deg(h) + 1) ≥ 0 ,

in other words,
L ≥ max(deg(r′ + q), deg(r)− 1) .

We leave it to the reader to verify that the expression on the right is indeed

L = deg(b) +max(deg(a), deg(b)) +

(
P∑
p=1

deg(Sp)

)
− 1 .

Theorem cmAZ. Let

F (x; y1, . . . , yd) = POL(x; y1, . . . , yd) ·H(x; y1, . . . , yd) , (MultiContHypergeometric)

where POL(x; y1, . . . , yd) is a polynomial of (x, y1, . . . , yd), and

H(x; y1, . . . , yd) = ea(x,y1,...,yd)/b(x,y1,...,yd) ·

(
P∏
p=1

Sp(x; y1, . . . , yd)
αp

)
,

(MultiPureContHypergeometric)
where a(y1, . . . , yd), b(y1, . . . , yd), Sp(y1, . . . , yd) (1 ≤ p ≤ P ) are polynomials of (y1, . . . , yd), while
the αp’s are commuting indeterminates. There exists a non-negative integer L, to be constructed
in the proof, and there exist L+ 1 polynomials in x, e0(x), e1(x), . . . , eL(x), not all zero, and there
also exist d rational functions Ri(x; y1, . . . , yd) (i = 1, . . . , d) such that

Gi(x; y1, . . . , yd) := Ri(x; y1, . . . , yd)F (x; y1, . . . , yd)

satisfy

L∑
i=0

ei(x)Di
xF (x; y1, . . . , yd) =

d∑
i=1

DxiGi(x; y1, . . . , yd) . (MultiContGertDoron)
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If F (x;±∞) = 0 (and hence G(x;±∞) = 0) it follows, by integrating over [−∞,∞]d, that

a(x) :=
∫ ∞
−∞

. . .

∫ ∞
−∞

F (x; y1, . . . , yd)dy1 . . . dyd ,

satisfies the linear recurrence equation with polynomial coefficients

L∑
i=0

ei(x)Di
xa(x) = 0 .

Sketch of Proof and Algorithm. Let L, for now, be any non-negative integer. Let

H(x; y1, . . . , yd) =
ea(x;y1,...,yd)/b(x;y1,...,yd)

b(x; y1, . . . , yd)2L
·

(
P∏
p=1

Sp(x; y1, . . . , yd)
αp

)
.

We have
L∑
i=0

ei(x)Di
xF (x; y1, . . . , yd) = h(y1, . . . , yd) ·H(x; y1, . . . , yd) ,

where h(y1, . . . , yd) is the expression given by

L∑
i=0

ai(x)
∑

k1+k2+k3=i
ki≥0

(
i

k1, k2, k3

)
(Dk1

x POL(x; y1, . . . , yd))

(
P∏
p=1

Sp(x; y1, . . . , yd)L−k2

)
·Tk2(x; y1, . . . , yd)·

b(x; y1, . . . , yd)2(L−k3) ·mk3(x; y1, . . . , yd) ,

where Tk2(x; y1, . . . , yd) is a polynomial in (y1, . . . , yd) for which

Dk2
x

(
P∏
p=1

Sp(x; y1, . . . , yd)αp
)

=

(
P∏
p=1

Sp(x; y1, . . . , yd)αp−k2

)
· Tk2(x; y1, . . . , yd) .

and mk3(x; y1, . . . , yd) is a polynomial in (x; y1, . . . , yd) such that

Dk3
x

(
ea(x;y1,...,yd)/b(x;y1,...,yd)

)
=
mk3(x; y1, . . . , yd)
b(x; y1, . . . , yd)2k3

ea(x;y1,...,yd)/b(x;y1,...,yd) ,

respectively.

For i = 1, . . . , d, let qi(y1, . . . , yd) and ri(y1, . . . .yd) be the numerator and denominator, respectively,
of the logarithmic derivative of H(x; y1, . . . , yd) w.r.t. yi:

DyiH(x; y1, . . . , yd)
H(x; y1, . . . , yd)

=
qi(y1, . . . , yd)
ri(y1, . . . , yd)

.
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Write, for i = 1, . . . , d,

Gi(x; y1, . . . , yd) = H(x; y1, . . . , yd) · ri(y1, . . . , yd) ·Xi(y1, . . . , yd) , (Ansatz)

where Xi(y1, . . . , yd) are polynomials to be determined. Now (MultiContGertDoron) is equivalent
to

d∑
i=1

[Dyiri(y1, . . . , yd) + qi(y1, . . . , yd)] ·Xi(y1, . . . , yd) + ri(y1, . . . , yd) ·DyiXi(y1, . . . , yd)

= h(y1, . . . , yd) . (MultiContGosper)

The rest of the proof of the existence of L is analogous to the proof of Theorem mAZ, since the
degree of h is of the form “ integer+ (positive integer)·L”, and for sufficiently large L, the
number of unknowns will exceed the number of equations, and we will be guaranteed a solution.
Once again, by genericity, it is not possible for all the ei(x)’s to be zero.

Accompanying Maple packages and Examples

The multi-Zeilberger algorithm, as described in Theorem mZ, is implemented in the Maple package
multiZeilberger. The refined version, where the user is allowed to specify denominators, is given
in MultiZeilbergerDen. The q-multi-Zeilberger algorithm, as stated in theorem qmZ, is imple-
mented in the Maple package qMultiZeilberger, while the multi-Almkvist-Zeilberger algorithm,
as described in Theorem mAZ, is contained in MultiAlmkvistZeilberger. Finally SMAZ is a more
efficient rendition for symmetric integrands.

These five packages are available from the webpage of this article
http://www.math.rutgers.edu/~zeilberg/ mamarim/mamarimhtml/multiZ.html, where there
is also sample input and output. Readers can generate many more examples on their own.

REFERENCES

[AZ] G. Almkvist and D. Zeilberger, The method of differentiating under the integral sign, J.
Symbolic Computation 10 (1990), 571-591.

[BR] W. Beckner and A. Regev, unpublished, untitled, and undated manuscript, c. 1980

[M] I.G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal. 13(1982), 988-1007.

[MZ] M. Mohammed and D. Zeilberger, Sharp Upper Bounds for the Orders of The Recurrences
Outputted by the Zeilberger and q-Zeilberger Algorithms, J. Symbolic Computation 39 (2005), 201-
207.

[P] P. Paule, Short and easy computer proofs of the Rogers-Ramanujan identities and of identities
of similar type, Elect. J. of Combinatorics 1 (1994), R10.

[R] A. Regev, Combinatorial sums, identities and trace identities of the 2 × 2 matrices, Adv. in
Math. 46 (1982), 230-240.

12



[T] A. Tefera, MultInt, a Maple Package for Multiple Integration by the WZ Method, J. of Symbolic
Computation 34 (2002), 329-353.

[WZ] H.S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and
”q”) multisum/integral identities, Invent. Math. 108 (1992), 575-633. [available on-line from the
authors’ websites.]

13


