
USING THE “FRESHMAN’S DREAM” IDENTITY TO PROVE
COMBINATORIAL CONGRUENCES
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Abstract. In a recent beautiful but technical article, William Y.C. Chen,

Qing-Hu Hou, and Doron Zeilberger developed an algorithms for finding con-
gruence, mod p, of sequences of indefinite sums of many combinatorial se-

quences, namely those (like the Catalan and Motzkin sequences) that are ex-

pressible in terms of constant terms of powers of Laurent polynomials. Here
we extend it in two directions. The Laurent polynomials in question may be

of several variables, and instead of single sums we have multiple sums. In fact

we even combine these two generalizations.

Introduction

In a recent elegant article, [2], the following type of quantities were considered(
rp−1∑
k=0

a(k)

)
mod p ,

where a(k) is a combinatorial sequence, expressible as the constant term of a power
of a Laurent polynomial of a singel variable, k; r is a positive integer; and p is a
general (symbolic) prime.

Their method, while ingenious, is very elementary! All they need is the

The Freshman’s Dream Identity

(a + b)p ≡p ap + bp ,

where x ≡p y means x ≡ ymod p.

Recall that the easy proof follows from using the Binomial theorem, and noting
that

(
p
r

)
is divisible by p except when r = 0 and r = p. This also leads, to one of the

many proofs of the grandmother of all congruences, Fermat’s Little Theorem,
ap ≡p a, by starting with 0p ≡p 0, and applying induction to (a + 1)p ≡p ap + 1p.

The second ingredient in the ingenious method of [2] is even more elementary

Sum of a Geometric Series:
n−1∑
i=0

zi =
1− zn

1− z
,

The focus in the Chen-Hou-Zeilberger paper was both computer-algebra imple-
mentation, and proving a general theorem about a wide class of sums, and it is
rather technical, and hence its beauty is lost to a wider audience. The first purpose
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of the present article is to give a more leisurly introduction to their method, and
illustrate it with some illuminating examples. The main purpose, however, is to
extend it in two directions. The summand a(k), may be the constant term of a
Laurent polynomial in several variables, and instead of a single summation sign,
we can have multi-sums. In fact we can combine these two

Notation The constant term of a Laurent polynomial P (x1, x2, . . . , xn), alias the
coefficient of x0

1x
0
2..x

0
n, is denoted by CT [P (x1, x2, . . . , xn)] and the general coeffi-

cient of xn1
1 xn2

2 ..xnk
n in P (x1, x2, . . . , xn) is denoted by COEFF[x

n1
1 x

n2
2 ..x

nk
n ]P (x1, x2, . . . , xn).

For example,

CT

[
1
xy

+ 3 + 5xy − x3 + 6y2

]
= 3 and COEFF[xy]

[
1
xy

+ 3 + 5xy + x3 + 6y2

]
= 5.

We use the symmetric representation of integers in [−|m|/2, |m|/2] when reducing
modulo integer m. For example, 6 mod 5 = 1 and 4 mod 5 = −1.

Review of the Chen-Hou-Zeilberger Single Variable Case

In order to motivate our generalization, we will first review, in more detail then
given in [2], some of their elegant results.

Proposition 1. For any prime p and positive integer r, define

A(r; p) :=
rp−1∑
n=0

(
2n

n

)
. Then, A(1; p) mod p =

{
1, if p ≡ 1 mod 3
−1, if p ≡ 2 mod 3 .

Proof: Using the fact that
(

2n

n

)
= CT

[
(1 + x)2n

xn

]
and (a + b)p ≡p ap + bp, we

have
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p−1∑
n=0

(
2n

n

)
=

p−1∑
n=0

CT

[(
(1 + x)2n

xn

)]

=
p−1∑
n=0

CT

[(
2 + x +

1
x

)n]

= CT

[(
2 + x + 1

x

)p − 1
2 + x + 1

x − 1

]

≡p CT

[
2p + xp + 1

xp − 1
1 + x + 1

x

]
By Freshman’s dream

≡p CT

[
2 + xp + 1

xp − 1
1 + x + 1

x

]
By Fermat’s little theorem

= CT

[
1 + xp + 1

xp

1 + x + 1
x

]
= CT

[
1 + xp + x2p

(1 + x + x2)xp−1

]
= COEFF[xp−1]

[
1

1 + x + x2

]
= COEFF[xp−1]

[
1− x

1− x3

]
.

= COEFF[xp]

∞∑
i=0

x3i+1 −
∞∑

i=0

x3i+2 .

The result follows from extracting the coefficient of xp from the two sums on the
right side.

Corollary 1 (Corollary 2.3, [2]): A(2; p) mod p =
{

3, if p ≡ 1 mod 3
−3, if p ≡ 2 mod 3 .

Proof: Proceeding as in Theorem 1 above,
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2p−1∑
n=0

(
2n

n

)
=

2p−1∑
n=0

CT

[(
(1 + x)2n

xn

)]

= CT

[(
2 + x + 1

x

)2p − 1
2 + x + 1

x − 1

]

= CT

[(
6 + 4x + 4

x + x2 + 1
x2

)p − 1
2 + x + 1

x − 1

]

≡p CT

[(
6 + 4xp + 4

xp + x2p + 1
x2p

)
− 1

2 + x + 1
x − 1

]

≡p COEFF[x2p−1]

[
1 + 4xp

1 + x + x2

]
≡p COEFF[x2p−1]

[
1

1 + x + x2

]
+ 4COEFF[xp−1]

[
1

1 + x + x2

]
.

The result follows from Theorem 1 and the last congruence.

Corollary 2 (Catalan Numbers): Let a(n) be the constant term of (1− x)
(

2 + x +
1
x

)n

and let

A(r; p) :=
rp−1∑
n=0

a(n) .

Then, A(1; p) mod p =
{

1, if p ≡ 1 mod 3
−2, if p ≡ 2 mod 3 .

Proof: Continuing as above,

p−1∑
n=0

a(n) =
p−1∑
n=0

CT

[
(1− x)

(
2 + x +

1
x

)n]

= CT

[
(1− x)

((
2 + x + 1

x

)p − 1
)

2 + x + 1
x − 1

]

≡p CT

[
(1− x)

((
2 + xp + 1

xp

)
− 1
)

2 + x + 1
x − 1

]

≡p COEFF[xp−1]

[
1− x

1 + x + x2

]
≡p COEFF[xp−1]

[
1

1 + x + x2

]
− COEFF[xp−2]

[
1

1 + x + x2

]
.

The result follows from Theorem 1 and the last congruence.
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Theorem 2 (Motzkin Numbers). Let a(n) be the constant term of (1− x2)
(

1 + x +
1
x

)n

,

and define

A(r; p) :=
rp−1∑
n=0

a(n) .

Then, A(1; p) mod p =
{

2, if p ≡ 1 mod 4
−2, if p ≡ 3 mod 4 .

Proof:

p−1∑
n=0

a(n) =
p−1∑
n=0

CT

[
(1− x2)

(
1 + x +

1
x

)n]

= CT

[
(1− x2)

((
1 + x + 1

x

)p − 1
)

1 + x + 1
x − 1

]

≡p COEFF[xp−1]

[
1− x2

1 + x2

]
≡p COEFF[xp−1]

[
1

1 + x2

]
− COEFF[xp−3]

[
1

1 + x2

]

The result follows from series expansion of
1

1 + x2
and the last congruence.

Corollary 3: Let a(n) be the constant term of (1− x2)
(

1 + x +
1
x

)n

and let

A(r; p) :=
rp−1∑
n=0

a(n) .

Then, A(2; p) mod p =
{

4, if p ≡ 1 mod 4
−4, if p ≡ 3 mod 4 .

Proof:
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2p−1∑
n=0

a(n) =
2p−1∑
n=0

CT

[
(1− x2)

(
1 + x +

1
x

)n]

= CT

 (1− x2)
((

1 + x + 1
x

)2p − 1
)

1 + x + 1
x − 1


= CT

[
(1− x2)

((
3 + 2x + x2 + 2

x + 1
x2

)p − 1
)

1 + x + 1
x − 1

]

= CT

[
(1− x2)

((
3 + 2xp + x2p + 2

xp + 1
x2p

)
− 1
)

1 + x + 1
x − 1

]

≡p COEFF[x2p−1]

[
(1− x2)(1 + 2xp)

1 + x2

]
≡p COEFF[x2p−1]

[
1

1 + x2

]
+ 2COEFF[xp−1]

[
1

1 + x2

]
− COEFF[x2p−3]

[
1

1 + x2

]
− 2COEFF[xp−3]

[
1

1 + x2

]
.

The result follows from Theorem 2 and the last congruence.

From the above theorems and corollaries, it is easy to observe that partial sums
with upper summation limit of the form rp− 1, for r > 1, can always be expressed
in terms of the sum with upper summation limit p − 1. This observation leads us
to the following simplification of Theorem 2.1 in [2].

Theorem 3 . Let P (x) be a Laurent polynomial in x and let p be a prime. Let
R(x) be the denominator, after clearing, of the expression

P (xp)− 1
P (x)− 1

.

Then, for any positive integer r and Laurent polynomial Q(x),(
rp−1∑
n=0

CT [P (x)nQ(x)]

)
mod p ,

is congruent to a finite linear combination of finite terms of coefficients of the

rational function
1

R(x)
.

Multi-Sums and Multi-Variables

Theorem 4. Let p be a prime number and let r and s be a positive integers. Let

A(r, s; p) :=
rp−1∑
n=0

sp−1∑
m=0

(
n + m

m

)2

.
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Then, A(1, 1; p) mod p =

 0, if p ≡ 0 mod 3
1, if p ≡ 1 mod 3
−1, if p ≡ 2 mod 3 .

Furthermore, A(2, 2; p) ≡p COEFF[x2p−1y2p−1]
1 + 4xp + 4yp + 16xpyp

(1 + x + xy)(1 + y + xy)
.

Proof: Let P (x, y) = (1 + y)
(

1 +
1
x

)
and Q(x, y) = (1 + x)

(
1 +

1
y

)
. First ob-

serve that (
n + m

m

)2

=
(

n + m

m

)(
n + m

n

)
= CT (P (x, y)nQ(x, y)m) .

Then,

p−1∑
m=0

p−1∑
n=0

(
m + n

m

)2

=
p−1∑
m=0

p−1∑
n=0

CT [P (x, y)nQ(x, y)m]

=
p−1∑
m=0

CT

[
P (x, y)p − 1)Q(x, y)m

P (x, y)− 1

]
= CT

[(
P (x, y)p − 1
P (x, y)− 1

)(
Q(x, y)p − 1
Q(x, y)− 1

)]
Using (a + b)p ≡ (ap + bp) mod p, we can pass to mod p as above

p−1∑
m=0

p−1∑
n=0

(
m + n

m

)2

≡p CT

[(
P (xp, yp)− 1
P (x, y)− 1

)(
Q(xp, yp)− 1
Q(x, y)− 1

)]
≡p CT

[
(1 + yp + xpyp)(1 + xp + xpyp)

(1 + y + xy)(1 + x + xy)xp−1yp−1

]
≡p COEFF[xp−1yp−1]

[
(1 + yp + xpyp)(1 + xp + xpyp)

(1 + y + xy)(1 + x + xy)

]
≡p COEFF[xp−1yp−1]

[
1

(1 + y + xy)(1 + x + xy)

]

Using the Apagodu-Zeilberger algorithm ([1]), the diagonal coefficients satisfy the
recurrence equation N2 + N + 1 = 0 with initial conditions a(0) = 1, a(1) =
1, a(2) = 0. The result now follows from the fact that this recurrence is equivalent
to N3 − 1 = 0 and the solution to this recurrence is given by:

a(n) =

 1, if n ≡ 0 mod 3
1, if n ≡ 1 mod 3
0, if n ≡ 2 mod 3 .

Note that our partial sum is congruent to a(p− 1), not a(p).

For the A(2, 2; p), we have
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2p−1∑
m=0

2p−1∑
n=0

(
m + n

m

)2

≡p CT

[(
P (xp, yp)2 − 1

P (x, y)− 1

)(
Q(xp, yp)2 − 1

Q(x, y)− 1

)]
≡p CT

[
(1 + yp + xpyp)2(1 + xp + xpyp)2

(1 + y + xy)(1 + x + xy)xp−1yp−1

]
≡p COEFF[x2p−1y2p−1]

[
(1 + yp + xpyp)2(1 + xp + xpyp)2

(1 + y + xy)(1 + x + xy)

]
≡p COEFF[x2p−1y2p−1]

[
1 + 4xp + 4yp + 16xpyp

(1 + x + xy)(1 + y + xy)

]
It follows that,

A(2, 2; p) ≡p COEFF[x2p−1y2p−1]
1 + 4xp + 4yp + 16xpyp

(1 + x + xy)(1 + y + xy)
.

By symmetry, it simplifies to

A(2, 2; p) ≡p COEFF[x2p−1y2p−1]
1

(1 + x + xy)(1 + y + xy)
+

8COEFF[xp−1y2p−1]
1

(1 + x + xy)(1 + y + xy)
+16COEFF[xp−1yp−1]

1
(1 + x + xy)(1 + y + xy)

Based on computer calculations, we conjecture other values of r and s that admits
a nice form. These congruence are also true mod p2. The congruences with higher
power of p are called supercongruence and the present method can’t handle them.

(1) For p ≥ 17, A(2, 2; p) mod p =
{

7, if p ≡ 1 mod 3
−7, if p ≡ 2 mod 3 .

(2) For p ≥ 37, A(2, 3; p) mod p =
{

17, if p ≡ 1 mod 3
−17, if p ≡ 2 mod 3 .

(3) For p ≥ 127, A(3, 3; p) mod p =
{

63, if p ≡ 1 mod 3
−63, if p ≡ 2 mod 3 .

(4) A(1, 1; p) ≡ 1 (mod p2) .

(5) For p ≥ 5, A(2, 2; p) mod p2 =
{

7, if p ≡ 1 mod 3
−7, if p ≡ 2 mod 3 .

(6) For p ≥ 7, A(2, 3; p) mod p2 =
{

17, if p ≡ 1 mod 3
−17, if p ≡ 2 mod 3 .

(7) For p ≥ 17, A(3, 3; p) mod p2 =
{

63, if p ≡ 1 mod 3
−63, if p ≡ 2 mod 3 .

Remark: If we take the third power of the summand in Theorem 4 and define

C(r, s; p) :=
rp−1∑
n=0

sp−1∑
m=0

(
n + m

m

)3

,

then,
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(
n + m

m

)3

= CT

[
(1 + x)m+n

xm

(1 + y)m+n

ym

(1 + z)m+n

zn

]
.

with P (x, y, z) =
(

1 +
1
x

)(
1 +

1
y

)
(1 + z) and Q(x, y, z) = (1 + x) (1 + y)

(
1 +

1
z

)
,

we have

(
n + m

m

)3

= CT ((P (x, y)mQ(x, y)n) .

and proceeding as above, we get

C(1, 1; p) ≡ COEFF[xp−1yp−1zp−1]

[
1

p(x, y, z)q(x, y, z)

]
mod p ,

where p(x, y, z) = 1 + x + y + xy + xz + yz + xyz and q(x, y, z) = 1 + y + z + xy +
xz + yz + xyz.

Theorem 5. Let p > 2 be prime, and r, s and t be positive integers. Define

A(r, s, t; p) :=
rp−1∑
m1=0

sp−1∑
m2=0

tp−1∑
m3=0

(
m1 + m2 + m3

m1, m2, m3

)
.

Then, A(1, 1, 1; p) ≡ 1 mod p .

Proof: First observe that
(

m1 + m2 + m3

m1, m2, m3

)
= CT

[
(x + y + z)m1+m2+m3

xm1ym2zm3

]
.

Hence
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∑
0≤m1,m2,m3≤p−1

(
m1 + m2 + m3

m1, m2, m3

)
=

∑
0≤m1,m2,m3≤p−1

CT [(x + y + z)(m1 + m2 + m3)/(xm1ym2zm3)]

= CT

 ∑
0≤m1,m2,m3≤p−1

(x + y + z)(m1 + m2 + m3)
xm1ym2zm3


= CT [

∑
0≤m1,m2,m3≤p−1

(x + y + z)m1

xm1

(x + y + z)m2

ym2

(x + y + z)m3

ym3

= CT [

 ∑
0≤m1≤p−1

(
x + y + z

x

)m1

 ∑
0≤m2≤p−1

(
x + y + z

y

)m2


 ∑

0≤m3≤p−1

(
x + y + z

z

)m3


= CT

[
(x+y+z

x )p − 1
x+y+z

x − 1
×

(x+y+z
y )p − 1

x+y+z
y − 1

×
(x+y+z

z )p − 1
x+y+z

z − 1

]

= COEFF[xp−1yp−1zp−1][
(x + y + z)p − xp

y + z
× (x + y + z)p − yp

x + z
×

(x + y + z)p − zp

x + y
] .

So far this is true for all p, not only p prime. Now take it mod p and get, since
(x + y + z)p ≡p (xp + yp + zp),

A(1, 1, 1; p) = COEFF[xp−1yp−1zp−1]

(
yp + zp

y + z
× xp + zp

x + z
× yp + zp

y + z

)
= COEFF[xp−1yp−1zp−1]

(
yp−1z0 − yp−2z + yp−3z2 + ... + y0zp−1

)
×(

xp−1z0 − xp−2z + xp−3z2 + ... + x0zp−1
)
×
(
xp−1y0 − xp−2y + xp−3y2 + ... + x0yp−1

)
= COEFF[xp−1yp−1zp−1][

p−1∑
j=0

(−1)jxp−1−jyj

(p−1∑
k=0

(−1)k+1zp−1−kxk

)(
p−1∑
l=0

(−1)lyp−1−lzl

)
] .

It is easy to see that to extract the xp−1yp−1zp−1 term in the above triple sum, we
need j = k = l = (p− 1)/2, and hence get (−1)3∗(p−1)/2 expansion by multiplying
(xp−1−jyj)(zp−1−kxk)(yp−1−lzl) exactly when j = k = l = (p − 1)/2. Hence the
coefficient of xp−1yp−1zp−1 is

p−1∑
j=0

(−1)3j =
p−1∑
j=0

(−1)j . It follows that the coefficient is 1 for p > 2 and 0 for

p = 2. This completes the proof.

We make the following conjectures based on computer calculations.
(1) A(1, 1, 2; p) ≡ 2 (mod p), for p ≥ 5.
(2) A(1, 2, 2; p) ≡ 5 (mod p) , for p ≥ 11.
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(3) A(2, 2, 2; p) ≡ 16 (mod p). for p ≥ 37.
The following supercongruences are also true.

(1) A(1, 1, 1; p) ≡ 1 (mod p2), for p ≥ 2.
(2) A(1, 1, 1; p) ≡ 1 (mod p3), for p ≥ 2.
(3) A(1, 1, 2; p) ≡ 2 (mod p2), for p ≥ 3.
(4) A(1, 1, 2; p) ≡ 2 (mod p3), for p ≥ 3.
(5) A(1, 2, 2; p) ≡ 5 (mod p2), for p ≥ 5 .
(6) A(1, 2, 2; p) ≡ 5 (mod p3), for p ≥ 3 .
(7) A(2, 2, 2; p) ≡ 16 (mod p2), for p ≥ 7.
(8) A(2, 2, 2; p) ≡ 16 (mod p3), for p ≥ 5.

Similarly, if we define

A(r, s, t, u; p) :=
rp−1∑
m1=0

sp−1∑
m2=0

tp−1∑
m3=0

up−1∑
m4=0

(
m1 + m2 + m3 + m4

m1, m2, m3, m4

)
,

for prime p and positive integers r, s, t and u, then we get the following conjectures.
(1) A(1, 1, 1, 1; p) ≡ 1 (mod p), for p ≥ 3 .
(2) A(1, 1, 1, 2; p) ≡ 2 (mod p), for p ≥ 5.
(3) A(1, 1, 2, 2; p) ≡ 5 (mod p), for p ≥ 11 .
(4) A(1, 2, 2, 2; p) ≡ 16 (mod p), for p ≥ 37 .

Our last observation is the general multinomial case. For prime p > 2 and positive
integers ri, i = 1, 2, 3, . . . , k, if we define

A(r1, r2, . . . , rk; p) :=
r1p−1∑
m1=0

r2p−1∑
m2=0

. . .

rkp−1∑
ma=0

(
m1 + m2 . . . + ma

m1, m2, . . . ,mk

)
.

Then, computer outputs support the following conjectures
(1) A(1, 1, . . . , 1; p) = 1 (mod p), for p ≥ 2.
(2) A(1, 1, . . . , 1; p) = 1 (mod p2), for p ≥ 2.
(3) A(1, 1, . . . , 1; p) = 1 (mod p3), for p ≥ 2.
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