The Gift Exchange Problem, Part II

By Moa Apagodu, David Applegate, Neil Sloane, and Doron Zeilberger
So far we had a k-free (partial) recurrence for $E_{\sigma}(n, k)$ (for $\sigma=2,3$) (that implied recurrences for $G_{\sigma}(\mathrm{n})$) and the trivial n-free (partial) recurrence, (5), for the general $E_{\sigma}(n, k)$, It turns out that $E_{\sigma}(n, k)$ satisfies a pure (ordinary) recurrence in k, and that $G_{\sigma}(n)$ satisfies a linear recurrence with polynomial coefficients, in n, for every σ.

Indeed: we have

$$
\sum_{k} E_{\sigma}(n, k) \frac{y^{k}}{k!}=\frac{1}{n!}\left(\sum_{i=0}^{\sigma+1} \frac{y^{i}}{i!}\right)^{n}
$$

Using the J.C.P.Miller ([Z1]) method we get the pure recurrence that enables us, for a given n, to compute fast the numbers $E_{\sigma}(n, k)$ for a fixed n, without having to use the $E_{\sigma}(n-1, k)$'s

$$
\sum_{i=0}^{\sigma}\left(\frac{n}{i!}-\frac{k}{(i+1)!}+\frac{1}{(i-1)!+i!}\right) E_{\sigma}(n, k-i)=0
$$

We also have, using Euler's integral representation for the factorial

$$
k!=\int_{0}^{\infty} e^{-y} y^{k} d y
$$

that we have the integral representation

$$
G_{\sigma}(n)=\frac{1}{n!} \int_{0}^{\infty} e^{-y}\left(\sum_{i=0}^{\sigma+1} \frac{y^{i}}{i!}\right)^{n} d y
$$

It follows from the (discrete) Almkvist-Zeilberger algorithm [AlZ] that $G_{\sigma}(n)$ satisfies some homogeneous linear recurrence with polynomial (in n) coefficients, and it follows from Theorem AZ of [ApZ] that its order is $\sigma+1$. The Maple package DavidNeil accompanying this article can easily compute these recurrences, and the the recurrences for $1 \leq \sigma \leq 6$, together with the implied asymptotics (using the Poincare-Birkhoff-Trijinksi method as exposited in [WiZ] and implemented in $[\mathrm{Z} 2]$) can be found in:
http://www.math.rutgers.edu/~ zeilberg/tokhniot/oDavidNeil1.
Regarding the generating function

$$
g_{\sigma}(x):=\sum_{n=0}^{\infty} G_{\sigma}(n) x^{n}
$$

We have,

$$
g_{\sigma}(x)=\int_{0}^{\infty} \exp \left(x\left(-y+\sum_{i=0}^{\sigma+1} \frac{y^{i}}{i!}\right)\right) d y .
$$

it follows from the (continuous) Almkvist-Zeilberger algorithm [AlZ] that $g_{\sigma}(x)$ satisfies some homogeneous linear differential equation with polynomial (in x) coefficients, and it follows from the obvious analog of Theorem AZ of [ApZ] that its order is $\sigma+1$.

See
http://www.math.rutgers.edu/~zeilberg/tokhniot/oDavidNeil2
for the differential equations for $1 \leq \sigma \leq 6$.
These differential equations transcribe to linear recurrences in $G_{\sigma}(n)$, that are not minimal-order, and for small σ coincide with the ones obtained above using Sister Celine's technique.

Additional References

[AlZ] G. Almkvist and D. Zeilberger, The method of differentiating under the integral sign, J. Symbolic Computation 10 (1990), 571-591.
[ApZ] Moa Apagodu and Doron Zeilberger, Multi-Variable Zeilberger and Almkvist-Zeilberger Algorithms and the Sharpening of Wilf-Zeilberger Theory, Adv. Appl. Math. 37(2006), 139-152.
[WiZ] Jet Wimp and Doron Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111(1985), 162-177.
[Z1] Doron Zeilbeger The J.C.P. Miller Recurrence for exponentiating a polynomial, and its q Analog, J. Difference Eqs. and Appls. 1(1995), 57-60.
[Z2] Doron Zeilbeger, AsyRec: A Maple package for Computing the Asymptotics of Solutions of Linear Recurrence Equations with Polynomial Coefficients, The Personal Journal of Ekhad and Zeilberger, http://www.math.rutgers.edu/ zeilberg/pj.html

