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So far we had a k-free (partial) recurrence for Eσ(n, k) (for σ = 2, 3) (that implied recurrences
for Gσ) and the trivial n-free (partial) recurrence, (5), for the general Eσ(n, k), It turns out that
Eσ(n, k) satisfies a pure (ordinary) recurrence in k, and that Gσ(n) satisfies a linear recurrence
with polynomial coefficients, in n, for every σ.
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Using the J.C.P.Miller ([Z1]) method we get the pure recurrence that enables us, for a given n, to
compute fast the numbers Eσ(n, k) for a fixed n, without having to use the Eσ(n− 1, k)’s
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We also have, using Euler’s integral representation for the factorial
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that we have the integral representation
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It follows from the (discrete) Almkvist-Zeilberger algorithm [AlZ] that Gσ(n) satisfies some ho-
mogeneous linear recurrence with polynomial (in n) coefficients , and it follows from Theorem AZ
of [ApZ] that its order is σ + 1. The Maple package DavidNeil accompanying this article can
easily compute these recurrences, and the the recurrences for 1 ≤ σ ≤ 6, together with the implied
asymptotics (using the Poincare-Birkhoff-Trijinksi method as exposited in [WiZ] and implemented
in [Z2]) to the sixth-order, can be found in:

http://www.math.rutgers.edu/ zeilberg/tokhniot/oDavidNeil1 .

Regarding the generating function

gσ(x) :=
∞∑
n=0

Gσ(n)xn,

it follows from the (discrete) Almkvist-Zeilberger algorithm [AlZ] that gσ(x) satisfies some homo-
geneous linear differential equation with polynomial (in x) coefficients , and it follows from the
obvious analog of Theorem AZ of [ApZ] that its order is σ + 1.
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See

http://www.math.rutgers.edu/ zeilberg/tokhniot/oDavidNeil2

for the differential equations for 1 ≤ σ ≤ 6.

These differential equations transcribe to linear recurrences in Gσ(n), that are not minimal-order,
and for small σ coincide with the ones obtained above using Sister Celine’s technique.
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