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Abstract. The Mahonian statistic is the number of inversions in a
permutation of a multiset with ai elements of type i, 1 ≤ i ≤ m. The
counting function for this statistic is the q analog of the multinomial
coefficient

(
a1+···+am
a1,...am

)
, and the probability generating function is the

normalization of the latter. We give two proofs that the distribution
is asymptotically normal. The first is computer-assisted, based on the
method of moments. The maple package MahonianStat, available from
the webpage of this article, can be used by the reader to perform exper-
iments and calculations. Our second proof uses characteristic functions.
We then take up the study of a local limit theorem to accompany our
central limit theorem. Here our result is less general, and we must be
content with a conjecture about further work. Our local limit theo-
rem permits us to conclude that the coeffiecients of the q-multinomial
are log-concave, provided one stays near the center (where the largest
coefficients reside.)

1. Dedication

This article is dedicated to Dennis Stanton, q-grandmaster and versatile
unimodaliter (and log-concaviter).

2. Introduction

The most important discrete probability distribution, by far, is the Bino-
mial distribution, B(n, p) for which we know everything explicitly, P(X = i)
(
(
n
i

)
pi(1− p)n−i), the probability generating function ((pt+ (1− p))n), the

moment generating function ((pet + 1− p)n), etc. etc. Most importantly, it
is asymptotically normal, which means that the normalized random variable

Zn =
Xn − np√
np(1− p)

tends to the standard Normal distribution N(0, 1), as n→∞.
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Another important discrete distribution function is the Mahonian distri-
bution, defined on the set of permutations on n objects, and describing,
inter-alia, the random variable “number of inversions”. (Recall that an in-
version in a permutation π1, . . . , πn is a pair 1 ≤ i < j ≤ n such that
πi > πj). Let us call this random variable Mn. The probability generating
function, due to Netto, is given explicitly by:

Fn(q) =
1
n!

n∏
i=1

1− qi

1− q
. (2.1)

The formula (2.1) has a simple probabilistic interpretation (see Feller’s
account in [3, Section X.6]): If Yj is the number of i with 1 ≤ i < j and
πi > πj , then

Mn = Y1 + · · ·+ Yn, (2.2)
and Y1, . . . , Yn are independent random variables and Yj is uniformly dis-
tributed on {0, . . . , j − 1}, as is easily seen by constructing π by inserting
1, . . . , n in this order at random positions; thus Yj has probability gener-
ating function (1 − qj)/(j(1 − q)). It follows from (2.1) or (2.2) by simple
calculations that the Mahonian distribution has mean and variance

EMn =
n(n− 1)

4
, (2.3)

VarMn =
n(n− 1)(2n+ 5)

72
=

2n3 + 3n2 − 5n
72

. (2.4)

Even though there is no explicit expression for the coefficients themselves
(i.e. for the exact probabilitity that a permutation of n objects would have
a certain number of inversions), it is a classical result (see [3, Section X.6]),
that follows from an extended form of the Central Limit Theorem, that the
normalized version

Mn − n(n− 1)/4√
(2n3 + 3n2 − 5n)/72

,

tends to N(0, 1), as n → ∞. So this sequence of probability distributions,
too, is asymptotically normal.

But what about words, also known as multi-set permutations?. Permu-
tations on n objects can be viewed as words in the alphabet {1, 2, . . . , n},
where each letter shows up exactly once. But what if we allow repetitions?
I.e., we consider all words with a1 occurrences of 1, a2 occurrences of 2, . . . ,
am occurrences of m. (We assume throughout that m ≥ 2 and each aj ≥ 1.)
We all know that the number of such words is the multinomial coefficient(

a1 + · · ·+ am
a1, . . . , am

)
and many of us also know that the number of such words with exactly k
inversions is the coefficient of qk in the q-analog of the multinomial coefficient(

a1 + · · ·+ am
a1, . . . , am

)
q

:=
[a1 + · · ·+ am]!

[a1]! · · · [am]!
, (2.5)
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where [n]! := [1][2] · · · [n], and [n] := (1 − qn)/(1 − q). Assuming that all
words are equally likely (the uniform distribution), the probability generat-
ing function is

Fa1,...,am(q) :=
(
∏m
i=1 ai!) ·

∏a1+···+am
i=1 (1− qi)

(a1 + · · ·+ am)!
∏m
j=1

∏aj
i=1(1− qi)

=
Fa1+···+am(q)

Fa1(q) · · ·Fam(q)
.

(2.6)
Indeed, this can be seen as follows. Let Ma1,...,am denote the number of
inversions in a random word. If we distinguish the ai occurrences of i by
adding different fractional parts, in random order, the number of inversions
will increase by Zi, say, with the same distribution as Mai ; further Ma1,...,am

and Z1, . . . , Zm are independent. On the other hand, Ma1,...,am+Z1+· · ·+Zm
has the same distribution as Ma1+···+am . Hence,

Fa1,...,am(q)Fa1(q) · · ·Fam(q) = Fa1+···+am(q), (2.7)

which is (2.6).
By (2.6), we further have the factorization

Fa1,...,am(q) =
m∏
j=2

FAj−1,aj (q), (2.8)

where Aj := a1 + · · ·+ aj , which reduces the general case to the two-letter
case.

Note that (2.6) shows that the distribution of Ma1,...,am is invariant if we
permute a1, . . . , am; a symmetry which is not obvious from the definition.
Remark 2.1. The two-letter case is particularly interesting, since the un-
normalized generating function(

a+ b

a

)
Fa,b(q) =

(1− qa+b)(1− qa+b−1) · · · (1− qa+1)
(1− qb)(1− qb−1) · · · (1− q1)

=
[a+ b]!
[a]! [b]!

,

(the q-binomial coefficient in (2.5)) is the same as the generating function
for the set of integer-partitions with largest part ≤ a and ≤ b parts, in other
words the set of integer-partitions whose Ferrers diagram lies inside an a
by b rectangle, where the random variable is the “number of dots” (i.e. the
integer being partitioned). In other words, the number of such partitions of
an integer n equal the number of words of a 1’s and b 2’s with n inversions.

It is easy to see that the mean of Ma1,...,am is

µ(a1, . . . , am) := EMa1,...,am = e2(a1, . . . , am)/2

(here ek(a1, . . . , am) is the degree k elementary symmetric function), so con-
sidering the shifted random variable Ma1,...,am − µ(a1, . . . , am), “number of
inversions minus the mean”, we get that the probability generating function
is

Ga1,...,am(q) := q−µ(a1,...,am)Fa1,...,am(q) =
Fa1,...,am(q)
qe2(a1,...,ak)/2

(2.9)
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By computing (q(qG)′)′ and plugging-in q = 1, or from (2.7) and (2.3)–(2.4),
it is easy to see that the variance σ2 := VarMa1,...,am is

σ2 =
(e1 + 1)e2 − e3

12
. (2.10)

(By σ we mean σ(a1, . . . , am) and we omit the arguments (a1, . . . , am) from
the ei’s.)

Let N := e1 = a1 + · · ·+ am, the length of the random word, and let
a∗ := maxj aj and N∗ := N − a∗.

One main result of the present article is:
Theorem 2.2. Consider the random variable, Ma1,...,am, “number of inver-
sions”, on the (uniform) sample space of words with a1 1’s, a2 2’s, . . . , am
m’s. For any sequence of sequences (a1, . . . , am) = (a(ν)

1 , . . . , a
(ν)

m(ν)) such
that N∗ := N − a∗ →∞, the sequence of normalized random variables

Xa1,...,am =
Ma1,...,am − µ(a1, . . . , am)

σ(a1, . . . , am)
,

tends to the standard normal distribution N (0, 1), as ν →∞.
Theorem 2.2 includes both the case when m ≥ 2 is fixed, and the case

when m → ∞. If m is fixed and a1 ≥ a2 ≥ · · · ≥ am, as may be assumed
by symmetry, then the condition N∗ →∞ is equivalent to a2 →∞. In the
case m→∞, the assumption N∗ →∞ is redundant, because N∗ ≥ m− 1.
Remark 2.3. The condition N∗ → ∞ is also necessary for asymptotic
normality, see Section 6.

We give a short proof of this result using characteristic functions in Sec-
tion 4. We give first in Section 3 another proof (at least of a special case)
that is computer-assisted, using the Maple package MahonianStat available
from the webpage of this article:
http://www.math.rutgers.edu/∼zeilberg/mamarim/mamarimhtml/mahon.html,
where one can also find sample input and output. This first proof uses the
method of moments.

We conjecture that Theorem 2.2 can be refined to a local limit theorem
as follows:
Conjecture 2.4. Uniformly for all a1, . . . , am and all integers k,

P(Ma1,...,am = k) =
1√
2πσ

(
e−(k−µ)2/(2σ2) +O

( 1
N∗

))
. (2.11)

We have not been able to prove this conjecture in full generality, but we
prove it under additional hypotheses on a1, . . . , am in Section 5.

3. A computer-inspired proof

We assume for simplicity thatm is fixed, and that (a1, . . . , am) = (ta0
1, . . . , ta

0
m)

for some fixed a0
1, . . . , a

0
m and t→∞.

We discover and prove the leading term in the asymptotic expansion,
in t, for an arbitrary 2r-th moment, for the normalized random variable
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Xa1,...,am = (Ma1,...,am − µ)/σ, and show that it converges to the moment
µ2r = (2r)!/(2rr!) of N (0, 1), for every r.

For the sake of exposition, we will only treat in detail the two-letter
case, where we can find explicit expressions for the asymptotics of the 2r-th
moment, for symbolic a1, a2, t and r to any desired (specific) order s (i.e.
the leading coefficient t3r as well as the terms involving t3r−1, . . . , t3r−s).
A modified argument works for the general case, but we can only find the
leading term, i.e. that

α2r := E(Xa1,...,am)2r =
(2r)!
2rr!

t3r +O(t3r−1) .

Of course the odd moments are all zero, since the distribution of Ma1,...,am

is symmetric about µ.
The mean in the two-letter case is simply ab/2, so the probability gener-

ating function for Ma,b − µ is

Ga,b(q) =
Fa,b(q)

qab/2(a+ b)!/(a!b!)
=

a!b!(1− qa+b)(1− qa+b−1) · · · (1− qa+1)
qab/2(a+ b)!(1− qb)(1− qb−1) · · · (1− q1)

,

Taking ratios, we have:

Ga,b(q)
Ga−1,b(q)

=
a(1− qa+b)

qb/2(a+ b)(1− qa)
. (3.1)

Recall that the binomial moments Ar := E[
(
X
r

)
] are the Taylor coefficients

of the probability generating function (in our case Ga,b(q)) around q = 1.
Writing q = 1 + z, we have

Ga,b(1 + z) =
∞∑
r=0

Ar(a, b)zr

Note that A0(a, b) = 1 and A1(a, b) = 0. Let us call the expression on the
right side of (3.1), with q replaced by 1 + z, P (a, b, z):

P (a, b, z) :=
a(1− (1 + z)a+b)

(1 + z)b/2(a+ b)(1− (1 + z)a)
Maple can easily expand P (a, b, z) to any desired power of z, It starts out
with

P (a, b, z) = 1 +
1
24

(2 a+ b) bz2 − 1
24

(2 a+ b) bz3

− 1
5760

(
8 a3 − 8 a2b− 12 ab2 − 3 b3 − 440 a− 220 b

)
bz4 + . . .

note that the coefficients of all the powers of z are polynomials in (a, b).
So let us write

P (a, b, z) =
∞∑
i=0

pi(a, b)zi ,

where pi(a, b) are certain polynomials that Maple can compute for any i, no
matter how big.
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Looking at the recurrence

Ga,b(1 + z) = P (a, b, z)Ga−1,b(1 + z) ,

and comparing coefficients of zr on both sides, we get

Ar(a, b)−Ar(a− 1, b) =
r∑
s=1

Ar−s(a− 1, b)ps(a, b) . (3.2)

Assuming that we already know the polynomials Ar−1(a, b), Ar−2(a, b), . . . ,
A0(a, b), the left side is a certain specific polynomial in a and b, that Maple
can easily compute, and then Ar(a, b) is simply the indefinite sum of that
polynomial, that Maple can do just as easily. So (3.2) enables us to get
explicit expressions for the binomial moments Ar(a, b) for any (numeric) r.

But what about the general (symbolic) r? It is too much to hope for the
full expression, but we can easily conjecture as many leading terms as we
wish. We first conjecture, and then immediately prove by induction, that
for r ≥ 1

A2r(a, b) =
1
r!

(
ab(a+ b)

24

)r
+ lower order terms

A2r+1(a, b) =
−1

(r − 1)!

(
ab(a+ b)

24

)r
+ lower order terms ,

where we can conjecture (by fitting polynomials in (a, b) to the data obtained
from the numerical r’s) any (finite, specific) number of terms.

Once we have asymptotics, to any desired order, for the binomial mo-
ments, we can easily compute the moments µr(a, b) of Ma,b − µ themselves,
for any desired specific r and asymptotically, to any desired order. We do
that by using the expressions of the powers as linear combination of falling-
factorials (or equivalently binomials) in terms of Stirling numbers of the sec-
ond kind, S(n, k). Note that for the asymptotic expressions to any desired
order, we can still do it symbolically, since for any specific m, S(n, n −m)
is a polynomial in n (that Maple can easily compute, symbolically, as a
polynomial in n). In particular, the variance is:

σ2 = µ2(a, b) =
ab(a+ b+ 1)

12
,

in accordance with (2.10). In general we have µ2r+1(a, b) = 0, of course,
and the six leading terms of µ2r(at, bt) can be found in the webpage of this
article. From this, Maple finds that α2r(at, bt) := µ2r(at, bt)/µ2(at, bt)r are
given asymptotically (for fixed a, b and t→∞) by:

α2r(at, bt) =
(2r)!
2rr!

·

(
1−

r(r − 1)
(
b2 + ab+ a2

)
5ab (a+ b)

· 1
t

)
+O(t−2) .

In particular, as t → ∞, they converge to the famous moments of N (0, 1).
QED.



THE MAHONIAN PROBABILITY DISTRIBUTION ON WORDS 7

3.1. The general case. To merely prove asymptotic normality, one does
not need a computer, since we only need the leading terms. The above proof
can be easily adapted to the general case (a1, . . . , am) = (ta0

1, . . . , ta
0
m). One

simply uses induction on m, the number of different letters.

3.2. The Maple package MahonianStat. The Maple package MahonianStat,
accompanying this article, has lots of features, that the readers can ex-
plore at their leisure. Once downloaded into a directory, one goes into a
maple session, and types read MahonianStat;. To get a list of the main
procedures, type: ezra();. To get help with a specific procedure, type
ezra(ProcedureName);. Let us just mention some of the more important
procedures.

AsyAlphaW2tS(r,a,b,t,s): inputs symbols r,a,b,t and a positive inte-
ger s, and outputs the asymptotic expansion, to order s, for α2r (=µ2r/µ

r
2)

ithMomWktE(r,e,t): the r-th moment about the mean of the number
of inversions of a1t 1’s, . . . , amt n’s in terms of the elementary symmetric
functions, in a1, . . . , am. Here r is a specific (numeric) positive integer, but
e and t are symbolic.

AppxWk(L,x): Using the asymptotics implied by the asymptotic normality
of the (normalized) random variable under consideration, finds an approxi-
mate value for the number of words with L[1] 1’s, L[2] 2’s, . . . , L[n] n’s with
exactly x inversions. For example, try: AppxWk([100,100,100],15000);

For the two-lettered case, one can get better approximations, by procedure
BetterAppxW2, that uses improved limit-distributions, using more terms in
the probability density function.

The webpage of this article has some sample input and output.

4. A general proof of Theorem 2.2

We have an exact formula (2.10) for the variance σ2 of Ma1,...,am . We first
show that σ2 is always of the order Θ(N2N∗).
Lemma 4.1. For any a1, . . . , am,

N2N∗
36

≤ σ2 ≤ (N + 1)NN∗
12

≤ N2N∗
6

.

Proof. For the upper bounds we assume, by symmetry, that a1 ≥ · · · ≥ am.
Then a∗ = a1 and

e2 = a1

m∑
j=2

aj + a2

m∑
j=3

aj + · · · ≤ N
m∑
j=2

aj = NN∗.

Since e1 = N , (2.10) yields the upper bounds.
For the lower bound, we first observe that 2e2e1 − 6e3 ≥ 0 (since this

difference can be written as a sum of certain ajakal). Hence e3 ≤ e1e2/3
and (2.10) yields

12σ2 ≥ e1e2 − e3 ≥ 2
3e1e2.
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Further,

2e2 =
m∑
j=1

aj(N − aj) ≥
m∑
j=1

aj(N − a∗) = NN∗,

and the lower bound follows. �

Proof of Theorem 2.2. From (2.6) follows the identity

Fn1,n2(eiθ) =
n2∏
j=1

(ei(n1+j)θ − 1)/(i(n1 + j)θ)
(eijθ − 1)/(ijθ)

. (4.1)

By Taylor’s series

log
ez − 1
z

= z/2 + z2/24 +O(z4), |z| ≤ 1,

and we substitute this expansion into the identity (4.1) to conclude:

Fn1,n2(eiθ) = exp
(
in1n2θ/2− n1n2(n1 + n2 + 1)θ2/24 +O(n2n

4
1θ

4)
)
,

(4.2)

uniformly for n1 ≥ n2 ≥ 1 and |θ| ≤ (n1 + n2)−1.
We use the factorization (2.8). By symmetry, we may assume a1 ≥ a2 ≥

· · · ≥ am, and then Aj−1 ≥ aj−1 ≥ aj for each j. Thus (4.2) yields, uniformly
for q = eiθ with |θ| ≤ N−1,

Fa1,...,am(q) =
m∏
j=2

FAj−1,aj (q)

= exp

 m∑
j=2

(
iAj−1ajθ/2−Aj−1aj(Aj + 1)θ2/24 +O(ajA4

j−1θ
4)
) .

Here, the sums of the coefficients of θ and θ2 are easily evaluated, but we
do not have to do that since they have to equal iµ and −σ2/2, respectively.
Further,

m∑
j=2

A4
j−1aj ≤ N4

m∑
j=2

aj = N4N∗. (4.3)

Consequently, if |θ| ≤ N−1,

Fa1,...,am(eiθ) = exp
(
iµθ − σ2θ2/2 +O(N4N∗θ

4)
)

(4.4)

and, by (2.9),

Ga1,...,am(eiθ) = exp
(
−σ2θ2/2 +O(N4N∗θ

4)
)
. (4.5)

Let θ = t/σ. For any fixed t, by Lemma 4.1,

|Nt/σ| = O
(
N
−1/2
∗

)
= o(1),
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so |θ| ≤ N−1 if ν is large enough. Hence, by (4.5) and Lemma 4.1,

Ga1,...,am

(
eit/σ

)
= exp

(
− t

2

2
+O

(N4N∗t
4

N4N2
∗

))
= exp

(
−t2/2 + o(1)

)
,

and Theorem 2.2 follows by the continuity theorem [4, Theorem XV.3.2]. �

5. The local limit theorem

“If one can prove a central limit theorem for a sequence an(k) of numbers
arising in enumeration, then one has a qualitative feel for their behavior.
A local limit theorem is better because it provides asymptotic information
about an(k) . . . ,” [2]. In this section we prove that the relation (2.11) holds
uniformly over certain very general, albeit not unrestricted, sets of tuples
a = (a1, . . . , am). The exact statement is given below in Theorem 5.5.

As explained in Bender [2], there are two standard conditions for passage
from a central to a local limit theorem: (1) if the sequence in question is
unimodal, then one has a local limit theorem for n in the set {|n−µ| ≥ εσ},
ε > 0; (2) if the sequence in question is log-concave, then one has a local
limit theorem for all n. Our sequence, the coefficients of the q-mutinomial,
is in fact unimodal, as first shown by Schur [6] using invariant theory, and
later by O’Hara [5] using combinatorics. Unfortunately, the ensuing local
limit theorem fails to cover the most interesting coefficients, the largest ones,
near the mean µ. However, our polynomials are manifestly not log-concave
as is seen by inspecting the first three coefficients (assuming n1, n2 ≥ 2)(

n1 + n2

n1

)
q

= 1 + q + 2q2 + · · · .

The question arises might the coefficients be log-concave near the mean, and
here is a small table of empirical values: (c[j] = [qj ]

(
2n
n

)
q
)

n (c[n2/2− 1])2 − c[n2/2]× c[n2/2− 2]
2 -1
4 -7
6 -165
8 -1529

10 44160
12 7715737
14 905559058
16 101507214165
18 11955335854893
20 1501943866215277

Based on this scant evidence, we speculate that some sort of log-concavity
theorem is true, but that its proper statement is complicated by describing
the appropriate range of a and j. Thus, we use neither of the two standard
methods mentioned above for proving our local limit theorem. (Later, we
shall see that our theorem has implications for log-concavity.) Instead, we
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use another standard method, direct integration (Fourier inversion) of the
characteristic function, or equivalently of the probability generating function
F (q) for q = eiθ on the unit circle. We begin with one such estimate for
rather small θ.
Lemma 5.1. There exists a constant τ > 0 such that for any a1, . . . , am
and |θ| ≤ τ/N , ∣∣Fa1,...,am(eiθ)

∣∣ =
∣∣Ga1,...,am(eiθ)

∣∣ ≤ e−σ2θ2/4.

Proof. Suppose that 0 < |θ| ≤ τ/N . Then, using Lemma 4.1,

N4N∗θ
4

σ2θ2
≤ N2N∗τ

2

σ2
≤ 36τ2,

so if τ is chosen small enough, the error term O(N4N∗θ
4) in (4.4) and (4.5)

is ≤ σ2θ2/4, and thus the result follows from (4.5). �

We let in the sequel τ denote this constant. We may assume 0 < τ ≤ 1.
Lemma 5.2. Uniformly, for all a1, . . . , am and all integers k,∣∣∣∣P(Ma1,...,am = k)− 1√

2πσ
e−(k−µ)2/(2σ2)

∣∣∣∣ ≤ ∫ π

τ/N
|Fa1,...,am(eiθ)|dθ+O

( 1
σN∗

)
.

Proof. For any integer k,

P(Ma1,...,am = k)− 1√
2πσ

e−(k−µ)2/(2σ2)

=
1

2π

∫ π

−π
Fa1,...,am(eiθ)e−ikθ dθ − 1

2π

∫ ∞
−∞

e−σ
2θ2/2e−i(k−µ)θ dθ

=
1

2π

∫
|θ|≤τ/N

(
Ga1,...,am(eiθ)− eσ2θ2/2

)
e−i(k−µ)θ dθ

+
1

2π

∫
τ/N≤|θ|≤π

Fa1,...,am(eiθ)e−ikθ dθ

− 1
2π

∫
|θ|≥τ/N

e−σ
2θ2/2e−i(k−µ)θ dθ

=: I1 + I2 + I3.

By (4.5) and the inequality |ew − 1| ≤ |w|max(1, |ew|) we find∣∣Ga1,...,am(eiθ)− e−σ2θ2/2
∣∣ ≤ e−σ2θ2/2O(N4N∗θ

4) max(1, exp(O(N4N∗θ
4)))

= O
(
N4N∗θ

4e−σ
2θ2/4

)
.

(Recall the error term O(N4N∗θ
4) is bounded above by σ2θ2/4.)

Integrating, we find, using Lemma 5.1,

|I1| ≤
∫
|θ|≤τ/N

∣∣∣Ga1,...,am(eiθ)− e−σ2θ2/2
∣∣∣ dθ

≤ O
(
N4N∗

) ∫ ∞
−∞

θ4e−σ
2θ2/4 dθ = O

(
N4N∗σ

−5
)

= O
( 1
σN∗

)
.
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Further, again using Lemma 5.1,

|I3| ≤
∫ ∞
τ/N

e−σ
2θ2/2 dθ ≤ 3σ−1e−(στ/N)2/2 ≤ 6

σ(στ/N)2
= O

( 1
σN∗

)
.

Finally, |I2| ≤
∫ π
τ/N |Fa1,...,am(eiθ)|dθ. �

In order to verify Conjecture 2.4, it thus suffices to show that the integral∫ π
τ/N |Fa1,...,am(eiθ)|dθ in Lemma 5.2 is O

(
1

σN∗

)
.

Remark 5.3. For example, an estimate

Fa1,...,am(eiθ) = O
( 1
σ3θ3

)
, 0 < θ ≤ π, (5.1)

is sufficient for (2.11). We conjecture that this estimate (5.1) holds when
N∗ ≥ 6, say. Note that it does not hold for very small N∗: taking θ = π we
have, for even n1, Fn1,1(−1) = 1/(n1 + 1) = 1/N , and the same holds for
Fn1,2(−1).

Note further that even the weaker estimate

Fa1,...,am(eiθ) = O
( 1
σ2θ2

)
, 0 < θ ≤ π, (5.2)

would be enough to prove (2.11) with the weaker error term O(N−1/2
∗ ).

We obtain a partial proof of Conjecture 2.4 using the following lemma.
Lemma 5.4. For a given τ ∈ (0, 1] there exists c = c(τ) > 0 such that

|Fn1,n2(eiθ)| ≤ e−cn2 (5.3)

for n1 ≥ n2 ≥ 1 and τ/(n1 + n2) ≤ |θ| ≤ π.
More generally, for any a1, . . . , am and τ/N ≤ |θ| ≤ π,

|Fa1,...,am(eiθ)| ≤ e−cN∗ . (5.4)

Proof. We prove first (5.3). For positive integer n define

fn(y, q) =
n∏
j=0

(1− yqj)−1.

For 0 ≤ R < 1, we have (e.g. by Taylor expansions) e2R ≤ 1+R
1−R , and thus

e4R ≤ (1+R)2

(1−R)2 = 1 + 4R
(1−R)2 . Hence, by convexity, for any real ζ,

e2R(1−cos ζ) ≤ 1 +
2R(1− cos ζ)

(1−R)2
=

1 +R2 − 2R cos ζ
(1−R)2

=
|1−Reiζ |2

(1−R)2
,

and thus ∣∣∣(1−Reiζ)−1
∣∣∣ ≤ (1−R)−1 exp (−R(1− cos ζ)) .

Consequently, by a simple trigonometric identity, for any real φ and θ,∣∣∣fn1(Reiφ, eiθ)
∣∣∣ ≤ (1−R)−n1−1
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× exp
(
−R
(
n1 + 1− cos

(
φ+

n1

2
θ
)sin(n1 + 1)θ/2

sin θ/2

))
≤ (1−R)−n1−1 × exp

(
R
(
−n1 − 1 +

sin(n1 + 1)θ/2
sin θ/2

))
.

The function g(θ) = gn(θ) := sinn(θ/2)
sin(θ/2) , where n ≥ 1, is an even function

of θ; is decreasing for 0 ≤ θ ≤ π/n, as can be verified by calculating g′;
and satisfies |g(θ)| ≤ g(π/n) for π/n ≤ |θ| ≤ π. Further, for n ≥ 2 and
0 ≤ |θ| ≤ π/n,

gn(θ) = 2
sin(nθ/4)
sin(θ/2)

cos(nθ/4) = 2gn/2(θ) cos(nθ/4) ≤ n cos(nθ/4)

≤ n
(

1− n2θ2

40

)
.

Let θ0 = τ(n1 + n2)−1 < π/(n1 + 1). For θ0 ≤ |θ| ≤ π we thus have

|gn1+1(θ)| ≤ gn1+1(θ0) ≤ n1 + 1− n3
1θ

2
0

40
;

whence, for 0 ≤ R < 1, the estimate above yields∣∣∣fn1(Reiφ, eiθ)
∣∣∣ ≤ (1−R)−n1−1 exp

(
−Rn3

1θ
2
0/40

)
. (5.5)

Combinatorially we know that [y`qn]fn1(y, q) is the number of partitions
of n having at most ` parts no one of which exceeds n1. As said in Re-
mark 2.1, this equals [qn]

(
n1+`
n1

)
Fn1+`(q). Hence, using Cauchy’s integral

formula, for any R > 0,(
n1 + n2

n1

)
Fn1,n2(q) = [yn2 ]fn1(y, q) =

1
2πi

∫
|y|=R

fn1(y, q)
dy

yn2+1
.

Consequently, (5.5) implies that for θ0 ≤ |θ| ≤ π and 0 < R < 1,(
n1 + n2

n1

)∣∣Fn1,n2(q)
∣∣ ≤ (1−R)−n1−1R−n2 exp

(
−Rn3

1θ
2
0/40

)
.

Now choose R = ρ := n2/(n1 + n2) ≤ 1/2. By Stirling’s formula,(
n1 + n2

n1

)
= Ω

(
n
−1/2
2

)
(1− ρ)−n1−1 ρ−n2

and thus, for θ0 ≤ |θ| ≤ π,∣∣Fn1,n2(q)
∣∣ ≤ O(n1/2

2 ) exp
(
−ρn3

1θ
2
0/40

)
= O(n1/2

2 ) exp (−Ω(n2)) .

This shows (5.3) for n2 sufficiently large. To handle the remaining finitely
many values of n2 we shall show: for each n2 ≥ 1 and τ ∈ (0, 1], there exists
δ > 0 such that

|Fn1,n2(eiθ)| ≤ 1− δ (5.6)
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for all n1 ≥ n2 and τ/(n1 + n2) ≤ |θ| ≤ π. To do this, we use

|Fn1,n2(eiθ)| =
n2∏
j=1

j

n1 + j

∣∣∣∣sin(n1 + j)θ/2
sin jθ/2

∣∣∣∣ ≤ 1
n1 + 1

∣∣∣∣sin(n1 + 1)θ/2
sin θ/2

∣∣∣∣ ,
and the fact that the absolute value of the ratio of sines at the far right is
maximized, in the interval of interest, at θ = τ/(n1 + n2). (This follows
from the above discussion of the function gn(θ).) Choose δ so small and C
so large that

n1 + n2

n1 + 1
sin τ/2
τ/2

≤ (1− δ)2,

and
sin

τ

2(n1 + n2)
≥ τ

2(n1 + n2)
(1− δ),

both for n1 ≥ C. Together, these prove (5.6) for n1 ≥ C. The remaining
finitely many values of n1 may be handled by the strict inequality∣∣∣∣sin(n1 + 1)θ/2

sin θ/2

∣∣∣∣ < n1 + 1, for θ 6= 0.

To prove (5.4), we assume as we may that a1 ≥ · · · ≥ am and use the
factorization (2.8). Let J be the first index such that a2 + · · ·+ aJ ≥ N∗/2.
For j ≥ J , then Aj−1 + aj = Aj ≥ AJ ≥ a1 + N∗/2 ≥ N/2, and thus
Aj |θ| ≥ N |θ|/2 ≥ τ/2; hence (5.3) yields∣∣FAj−1,aj (e

iθ)
∣∣ ≤ e−c(τ/2)aj .

We thus obtain from (2.8), since each Fn1,n2 is a probability generating
function and thus is bounded by 1 on the unit circle,

|Fa1,...,am(eiθ)| =
m∏
j=2

|FAj−1,aj (e
iθ)| ≤

m∏
j=J

e−c(τ/2)aj ≤ e−c(τ/2)N∗/2,

because
∑m

j=J aj ≥ N∗/2. This proves (5.4) (redefining c(τ)). �

Theorem 5.5. There exists a positive constant c such that for every C, the
following is true. Uniformly for all a1, . . . , am such that a∗ ≤ CecN∗ and all
integers k,

P(Ma1,...,am = k) =
1√
2πσ

(
e−(k−µ)2/(2σ2) +O

( 1
N∗

))
. (5.7)

Proof. Let c1 = c(τ) be the constant in Lemma 5.4. Then, Lemmas 5.2
and 5.4 yield

P(Ma1,...,am = k) =
1√
2πσ

(
e−(k−µ)2/(2σ2) +O

( 1
N∗

+ σe−c1N∗
))
.

For any fixed c < c1 we have, using Lemma 4.1, σN∗e−c1N∗ = O(Ne−cN∗)
and thus

P(Ma1,...,am = k) =
1√
2πσ

(
e−(k−µ)2/(2σ2) +O

(1 +Ne−cN∗

N∗

))
.
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The result follows, since Ne−cN∗ = a∗e−cN∗+N∗e−cN∗ = a∗e−cN∗+O(1). �

5.1. Log-concavity. Let us review the proof of Theorem 5.5 with the in-
tention of greater accuracy. The goal is to prove log-concavity in some range.
For concreteness, let a = (n, n). Then σ2 is of order n3, and for sufficient
accuracy we take the Taylor series in the exponent of (4.2) out to O(θ10).
This yields, for some polynomials pk(n) of degree k + 1,

Fn,n(eiθ) = exp
(
iµθ − σ2θ2/2 + p4(n)θ4 + p6(n)θ6 + p8(n)θ8 +O(n11θ10)

)
= eiµθ−σ2θ2/2

(
1 + p4(n)θ4 + p6(n)θ6 + p8(n)θ8

+ 1
2p

2
4(n)θ8 + p4(n)p6(n)θ10 + 1

6p
3
4(n)θ12 +O(n11θ10)

)
Arguing as in the proof of Lemma 5.2 but using this estimate instead of
(4.5) for |θ| ≤ τ/N , one easily obtains, after the substitution θ = t/σ, for
any k and with x := (k − µ)/σ,

P(Mn,n = k) =
1

2π

∫ ∞
−∞

e−t
2/2−itx

(
1 +

p4(n)
σ4

t4 + · · ·+ p3
4(n)

6σ12
t12
) dt
σ

+O(n−4σ−1).

Letting ϕ(x) := (2π)−1/2e−x
2/2 denote the normal density function, and ϕ(j)

its derivatives, we obtain by Fourier inversion

P(Mn,n = k) = σ−1
(
ϕ(x) +

p4(n)
σ4

ϕ(4)(x) + · · ·+ p3
4(n)

6σ12
ϕ(12)(x) +O(n−4)

)
=

1√
2πσ

e−x
2/2
(
1 +Q(n, x) +O(n−4)

)
, (5.8)

where Q(n, x) is σ−12 times a certain polynomial in n and x of degree 17 in
n; thus for x = O(1) we have Q(n, x) = O(n−1) and similarly, for derivatives
with respect to x, Q′(n, x) = O(n−1) and Q′′(n, x) = O(n−1). (Q(n, x) can
easily be computed explicitly using computer algebra, but we do not have
to do it.)

Replacing k by k ± 1 in (5.8) we find, for x = O(1),

P(Mn,n = k ± 1) =
1√
2πσ

e−(x±σ−1)2/2
(
1 +Q(n, x)± σ−1Q′(n, x) +O(n−4)

)
,

and thus
P(Mn,n = k − 1)P(Mn,n = k + 1)

=
1

2πσ2
e−x

2−σ−2(
(1 +Q(n, x))2 − σ−2Q′(n, x)2 +O(n−4)

)
.

= e−σ
−2
P(Mn,n = k)2

(
1 +O(n−4)

)
.

Hence, for x = O(1), i.e., k = µ+O(σ),

P(Mn,n = k)2 − P(Mn,n = k − 1)P(Mn,n = k + 1)

=
(
σ−2 +O(n−4)

)
P(Mn,n = k)2 =

1
2πσ4

e−x
2(

1 +O(n−1)
)
.

(5.9)
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In particular, this is positive for large n. This gives:
Theorem 5.6 (A log-concavity result). For each constant C we have n0

such that for n ≥ n0 and |j − µ| ≤ Cσ

c2
j ≥ cj−1cj+1,

where

cj := [qj ]
(

2n
n

)
q

=
(

2n
n

)
P(Mn,n = j).

We note that the “mysterious” numbers appearing in our earlier table for
the choice j = n2/2− 1 are asymptotically

1
2πσ4

(
2n
n

)2

∼ 18
πn6

(
2n
n

)2

∼ 18
π2
n−724n.

Remark 5.7. This argument for log-concavity in the central region does
not use any special properties of the distribution; although we needed sev-
eral terms in the asymptotic expansion above, it was only to see that they
are sufficiently smooth, and the main term in the final result (5.9) comes
from the main term e−x

2/2/(
√

2πσ) in (5.7). What we have shown is just
that the convergence to the log-concave Gaussian function in the local limit
theorem is sufficiently regular for the log-concavity of the limit to transfer
to P(Mn,n = k) for k = µ+O(σ) and sufficiently large n.

6. Final comments

Suppose that N∗ 6→ ∞. We may, as usual, assume that a1 ≥ · · · ≥ am.
By considering a subsequence (if necessary), we may assume that N∗ :=
N − a∗ = a2 + · · ·+ am is a constant; this entails that m is bounded, so by
again considering a subsequence, we may assume that m and a2, . . . , am are
constant. We thus study the case when a1 →∞ with fixed a2, . . . , am.

In this case, the number of inversions between indices 2, . . . ,m is O(1),
which is asymptotically negligible. Ignoring these, we can thus consider the
random word as N∗ letters 2, . . . ,m inserted in a1 1’s, and the number of
inversions is the sum of their positions, counted from the end. It follows
easily, either probabilistically or by calculating the characteristic function
from (2.6), that Ma1,...,am/N , or equivalently Ma1,...,am/a1, converges in dis-
tribution to the sum

∑N∗
j=1 Uj of N∗ independent random variables Uj with

the uniform distribution on [0, 1]. Equivalently, since σ2 ∼ n2
1N∗/12 ∼

N2N∗/12,

Ma1,...,am − µ(a1, . . . , am)
σ(a1, . . . , am)

d−→
√

12
N∗

N∗∑
j=1

(Uj − 1
2),

where d−→ denotes convergence in distribution. This limit is clearly not
normal for any finite N∗. (However, its distribution is close to standard
normal for large N∗. Note that it is normalized to mean 0 and variance 1.)
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