The number of m-Dimensional Partitions of Eleven and Twelve

Shalosh B. EKHAD ${ }^{1}$

Way back in the sixties, when computation was slow and difficult, in a true tour de force, Oliver Atkin (of Ramanujan congruences fame), Ian Macdonald (of Symmetric Functions and Macdonald Polynomials fame), John McKay (of moonshine fame), together with the not-as-famous-but-nevertheless-computer-whiz Paul Bratley, disproved an unfortunate conjecture of Major Percy Alexander MacMahon of Combinatory Analysis fame. To that end they derived explicit expressions, as polynomials in m, for $M_{m}(n)$, the number of m-dimensional partitions of n for $1 \leq n \leq 10$. Their work was beautifully, and leisurely, described by Partitions guru George Andrews ([A], ch. 11.). $M_{m}(n)$ agreed with MacMahon's conjecture (see [A]) for $n \leq 5$, so $M_{m}(6)$ sufficed to prove MacMahon wrong, and that was as far as Andrews went. But now that computers are so much faster, I asked my master, Doron Zeilberger, to spend an afternoon writing Maple code [Z] in order to extend these formulas to $n=11$ and $n=12$. He followed the strategy of [ABMM], but automating everything. Zeilberger didn't try too hard to "optimize", and using his suboptimal code, I easily got expressions for $M_{m}(n)$ for all $n \leq 12$. I am sure that if he tried a bit harder, he could have written a program that would get also $n=13,14$ and perhaps even $n=15$, but who cares? I am willing to bet that no one in our lifetime would be able to compute $M_{m}(300)$. In fact, the Riemann Hypothesis would be proven way before the exact formula for $M_{m}(300)$ (a certain mundane polynomial of m of degree 299) would be ever known.

But since computing $M_{m}(n)$ for $n \leq 12$ was so easy, I am hereby filling a much needed gap and am stating the following extension of Theorem 11.8 of the classic [A]. For the sake of completeness I am also reproducing the previously known expressions for $n \leq 10$.

Theorem: Let $M_{m}(n)$ be the number of m-dimensional partitions of n, then

$$
\begin{gathered}
M_{m}(1)=1, \\
M_{m}(2)=m+1, \\
M_{m}(3)=1 / 2(m+2)(m+1), \\
M_{m}(4)=1 / 6(m+1)\left(m^{2}+8 m+6\right), \\
M_{m}(5)=1 / 24(m+1)\left(m^{3}+21 m^{2}+38 m+24\right), \\
M_{m}(6)=\frac{1}{120}(m+4)(m+1)\left(m^{3}+40 m^{2}+61 m+30\right),
\end{gathered}
$$

[^0]\[

$$
\begin{gathered}
M_{m}(7)=\frac{1}{720}(m+1)\left(m^{5}+80 m^{4}+965 m^{3}+1810 m^{2}+1824 m+720\right) \\
M_{m}(8)=\frac{1}{5040}(m+1)\left(m^{6}+132 m^{5}+3235 m^{4}+13320 m^{3}+16864 m^{2}+16848 m+5040\right) \\
M_{m}(9)=\frac{1}{40320}(m+1) \\
\left(m^{7}+203 m^{6}+8911 m^{5}+82145 m^{4}+125944 m^{3}+217532 m^{2}+129744 m+40320\right) \\
M_{m}(10)=\frac{1}{362880}(m+1) \\
\left(m^{8}+296 m^{7}+21238 m^{6}+387884 m^{5}+1273069 m^{4}+1377404 m^{3}+3261852 m^{2}+935856 m+362880\right) \\
M_{m}(11)=\frac{1}{3628800}(m+1) \\
\left(m^{9}+414 m^{8}+45366 m^{7}+1464624 m^{6}+10983189 m^{5}+8292186 m^{4}\right. \\
\left.+43268084 m^{3}+18819576 m^{2}+15104160 m+3628800\right) \\
M_{m}(12)=\frac{1}{39916800}(m+1) . \\
\left(m^{10}+560 m^{9}+88980 m^{8}+4653120 m^{7}+69709773 m^{6}+152328120 m^{5}\right. \\
\left.+98041670 m^{4}+1093797880 m^{3}-395547624 m^{2}+473807520 m+39916800\right)
\end{gathered}
$$
\]

Proof: Routine! (See the source code of $[\mathrm{Z}]$ for details).
Let me conclude by commenting that recently a renewed interest in the counting of higher-dimensional partitions (in physics!) has lead to the fascinating article [BGP]. It is possible that my "new" results are implicit there (recall that in order to decipher a polynomial of degree d it suffices to know $d+1$ data points, so in order to know, e.g., $M_{m}(13)$, we only need to know $M_{m}(13)$ for $1 \leq m \leq 13$, and this data may have already been computed by them (and if not, it could easily have been!))

References

[A] G. E. Andrews, "The Theory of Partitions", Addison-Wesley, 1976. Reprinted by Cambridge University Press, 1984. First paperback edition, 1998.
[ABMM] A.O.L. Atkin, P. Bratley, I.G. Macdonald, and J.K.S. McKay, Some Computations for m-dimensional partitions, Proc. Cambridge Phil. Soc. 63 (1967), 1097-1100.
[BGP] S. Balakrishnan, S. Govindarajan and N. S. Prabhakar, On the asymptotics of higherdimensional partitions, arXiv:1105.6231 .
[Z] D. Zeilberger, mDimPars, a Maple package available from http://www.math.rutgers.edu/~zeilberg/tokhniot/mDimPars .

[^0]: 1 ShaloshBEkhad@gmail.com .
 Accompanied by Maple package http://www.math.rutgers.edu/~zeilberg/tokhniot/mDimPars written by D. Zeilberger .
 Exclusively published in: http://www.math.rutgers.edu/~zeilberg/pj.html.
 Feb. 15, 2012.

