Optimizing a losing game

HSW

December 15, 2009

1 The problem

Stan Wagon told me about the following pretty coin tossing problem. Suppose Alice has a
coin with heads probability \(q \) and Bob has one with heads probability \(p \). Suppose \(q < p \).
Now each of them will toss their coin \(n \) times, and Alice wins iff she gets more heads than
Bob does. Evidently the game favors Bob, but for the given \(p, q \), what is the choice of \(n \) that
maximizes Alice’s chances of winning?

Her chances of winning are

\[
f(n) = \sum_{r \geq 0} \binom{n}{r} p^r (1 - p)^{n-r} \sum_{s > r} \binom{n}{s} q^s (1 - q)^{n-s}.
\]

(1)

Our task will be to find a recurrence for \(f(n) \).

2 The recurrence for the summand

Put

\[
x = p/(1 - p), \quad y = q/(1 - q), \quad g(n) = f(n)/(p^n (1 - q)^n),
\]

(2)

so

\[
g(n) = \sum_{r \geq 0} \sum_{s > r} \binom{n}{r} \binom{n}{s} x^r y^s.
\]

Let \(G(n, r, s) = \binom{n}{r} \binom{n}{s} x^r y^s \), be the summand. We use Zeilberger’s algorithm, and his
program \texttt{MulZeil} returns a recurrence

\[
G(n+1, r, s) - (x+1)(y+1)G(n, r, s) = (K_r - 1)(c_1(n, r, s)G(n, r, s))
+ (K_s - 1)(c_2(n, r, s)G(n, r, s)),
\]

(3)
where K_r, K_s are shift operators in their subscripts, and the c_i are given by
\begin{align*}
c_1 &= c_1(n, r, s) = \frac{r(1+y)}{r - n - 1}; \quad c_2 = c_2(n, r, s) = \frac{s(n + 1)}{(s - n - 1)(n - r + 1)}, \quad (4)
\end{align*}
This is the recurrence for the summand, and it can be quickly verified by dividing through by $G(n, r, s)$, canceling all of the factorials, and noting that the resulting polynomial identity states that $0 = 0$.

3 The recurrence for the sum

To find the recurrence for the sum, first in the case where ties do not count for Bob, we sum the recurrence (3) over $s > r$, and then sum the result over $r \geq 0$. To do this we have first, for every function ϕ of compact support,
\begin{align*}
\sum_{r \geq 0} \sum_{s > r} (K_r - 1) \phi(r, s) &= - \sum_{s \geq 1} \phi(0, s) + \sum_{r \geq 1} \phi(r, r),
\end{align*}
and
\begin{align*}
\sum_{r \geq 0} \sum_{s > r} (K_s - 1) \phi(r, s) &= - \sum_{r \geq 0} \phi(r, r + 1).
\end{align*}
Consequently there results
\begin{align*}
g(n + 1) - (x + 1)(y + 1)g(n) &= - \sum_{s \geq 1} c_1(n, 0, s) G(n, 0, s) + \sum_{r \geq 1} c_1(n, r, r) G(n, r, r) \\
&\quad - \sum_{r \geq 0} c_2(n, r, r + 1) G(n, r, r + 1).
\end{align*}
Next we insert the values, from (4),
\begin{align*}
c_1(n, 0, s) &= 0; \quad c_1(n, r, r) = \frac{r(1+y)}{r - n - 1}; \quad c_2(n, r, r + 1) = \frac{(r+1)(n+1)}{(r-n)(n-r+1)},
\end{align*}
which gives
\begin{align*}
g(n + 1) - (x + 1)(y + 1)g(n) &= \sum_{r \geq 1} \frac{r(1+y)}{r - n - 1} G(n, r, r) - \sum_{r \geq 0} \frac{(r+1)(n+1)}{(r-n)(n-r+1)} G(n, r, r + 1).
\end{align*}
Now substitute the values $G(n, r, r) = \binom{n}{r}^2 (xy)^r$, and $G(n, r, r + 1) = \binom{n}{r} \binom{n}{r+1} x^r y^{r+1}$, and simplify the result, to obtain

$$g(n + 1) - (x + 1)(y + 1)g(n) = \sum_{r \geq 1} \frac{r(1+y)}{r-n-1} \binom{n}{r}^2 (xy)^r - \sum_{r \geq 0} \frac{(r+1)(n+1)}{(r-n)(n-r+1)} \binom{n}{r} x^r y^{r+1}$$

$$= -(y + 1) \sum_{r \geq 0} \binom{n}{r+1} x^r y^{r+1} + \sum_{r \geq 0} \binom{n+1}{r} \binom{n}{r} x^r y^{r+1}$$

$$= y \phi_n(xy) - \psi_n(xy),$$

say, where

$$\phi_n(z) = \sum_{r=0}^{n} \binom{n}{r}^2 z^r; \quad \psi_n(z) = \sum_{r=0}^{n} \binom{n}{r+1} \binom{n}{r} z^{r+1}. \quad (5)$$

Next, replace $g(n)$ by $f(n)/((1-p)^n(1-q^n))$, noting that $(x+1)(y+1) = 1/((1-p)(1-q))$, to get

$$\frac{f(n+1) - f(n)}{(1-p)(1-q))^{n+1}} = y \phi_n(xy) - \psi_n(xy) = \frac{q}{1-q} \phi_n \left(\frac{pq}{(1-p)(1-q)} \right) - \psi_n \left(\frac{pq}{(1-p)(1-q)} \right). \quad (6)$$

Note that this gives a rapid method of computing $f(n)$ since each of the polynomials ϕ, ψ satisfies a three term recurrence, namely

$$(n + 2)\phi_{n+2}(z) = (z + 1)(2n + 3)\phi_{n+1}(z) - (z - 1)^2(n + 1)\phi_n(z),$$

and

$$(n + 1)(n + 3)\psi_{n+2}(z) = (n + 2)(2n + 3)(z + 1)\psi_{n+1}(z) - (z - 1)^2(n + 2)(n + 1)\psi_n(z),$$

with initial conditions

$$\phi_0(z) = 1; \quad \phi_1(z) = 1 + z; \quad \psi_0(z) = 0; \quad \psi_1(z) = z.$$

4 Analysis of the result

Regard p, q as fixed. Since $f(1) - f(0) > 0$, f is initially increasing. We want to discover the circumstances under which f will be decreasing steadily when n is large enough. This
means that we want to analyze \(y\phi_n(z) - \psi_n(z) \) for fixed \(z \) and large \(n \). To do this we show first that both the \(\phi \)'s and the \(\psi \)'s are closely related to the Legendre polynomials.

First, it is well known that

\[
\phi_n(z) = (1 - z)^n P_n \left(\frac{1 + z}{1 - z} \right).
\]

Next, we have \(\psi'_{n}(z) = n\phi_{n}(z) - z\phi'_{n}(z) \), from which

\[
\psi_{n}(z) = (n + 1) \int_{0}^{z} \phi_{n}(t) dt - z\phi_{n}(z)
\]

\[
= (n + 1) \int_{0}^{z} (1 - t)^n P_n \left(\frac{1 + t}{1 - t} \right) dt - z\phi_{n}(z)
\]

\[
= (n + 1) 2^{n+1} \int_{1}^{1+z} \frac{P_n(u) du}{(1 + u)^{n+2}} - z(1 - z)^n P_n \left(\frac{1 + z}{1 - z} \right),
\]

thereby expressing the \(\psi \)'s in terms of the Legendre polynomials also.

5 Hypergeometric functions

Directly from its definition (5) we have that \(\psi_{n}(z) = nz_{2} F_{1}[-n, 1 - n; 2|z] \). On the other hand, from Rainville we have

\[
{2} F{1} \left[-n, 1 - n; 2 \frac{1 + x}{|x - 1|} \right] = \frac{1}{n + 1} \left(\frac{2}{1 - x} \right)^{n} P^{(1,-1)}_{n}(x),
\]

in which the \(P \)'s on the right are the Jacobi polynomials.