Optimizing a losing game

HSW

December 15, 2009

1 The problem

Stan Wagon told me about the following pretty coin tossing problem. Suppose Alice has a coin with heads probability q and Bob has one with heads probability p. Suppose $q<p$. Now each of them will toss their coin n times, and Alice wins iff she gets more heads than Bob does. Evidently the game favors Bob, but for the given p, q, what is the choice of n that maximizes Alice's chances of winning?

Her chances of winning are

$$
\begin{equation*}
f(n)=\sum_{r \geq 0}\binom{n}{r} p^{r}(1-p)^{n-r} \sum_{s>r}\binom{n}{s} q^{s}(1-q)^{n-s} . \tag{1}
\end{equation*}
$$

Our task will be to find a recurrence for $f(n)$.

2 The recurrence for the summand

Put

$$
\begin{equation*}
x=p /(1-p), \quad y=q /(1-q), \quad g(n)=f(n) /\left((1-p)^{n}(1-q)^{n}\right) \tag{2}
\end{equation*}
$$

so

$$
g(n)=\sum_{r \geq 0} \sum_{s>r}\binom{n}{r}\binom{n}{s} x^{r} y^{s} .
$$

Let $G(n, r, s)=\binom{n}{r}\binom{n}{s} x^{r} y^{s}$, be the summand. We use Zeilberger's algorithm, and his program MulZeil returns a recurrence

$$
\begin{align*}
& G(n+1, r, s)-(x+1)(y+1) G(n, r, s)=\left(K_{r}-1\right)\left(c_{1}(n, r, s) G(n, r, s)\right) \\
&+\left(K_{s}-1\right)\left(c_{2}(n, r, s) G(n, r, s)\right), \tag{3}
\end{align*}
$$

where K_{r}, K_{s} are shift operators in their subscripts, and the c_{i} are given by

$$
\begin{equation*}
c_{1}=c_{1}(n, r, s)=\frac{r(1+y)}{r-n-1} ; \quad c_{2}=c_{2}(n, r, s)=\frac{s(n+1)}{(s-n-1)(n-r+1)} . \tag{4}
\end{equation*}
$$

This is the recurrence for the summand, and it can be quickly verified by dividing through by $G(n, r, s)$, canceling all of the factorials, and noting that the resulting polynomial identity states that $0=0$.

3 The recurrence for the sum

To find the recurrence for the sum, first in the case where ties do not count for Bob, we sum the recurrence (3) over $s>r$, and then sum the result over $r \geq 0$. To do this we have first, for every function ϕ of compact support,

$$
\sum_{r \geq 0} \sum_{s>r}\left(K_{r}-1\right) \phi(r, s)=-\sum_{s \geq 1} \phi(0, s)+\sum_{r \geq 1} \phi(r, r),
$$

and

$$
\sum_{r \geq 0} \sum_{s>r}\left(K_{s}-1\right) \phi(r, s)=-\sum_{r \geq 0} \phi(r, r+1) .
$$

Consequently there results

$$
\begin{gathered}
g(n+1)-(x+1)(y+1) g(n)=-\sum_{s \geq 1} c_{1}(n, 0, s) G(n, 0, s)+\sum_{r \geq 1} c_{1}(n, r, r) G(n, r, r) \\
-\sum_{r \geq 0} c_{2}(n, r, r+1) G(n, r, r+1)
\end{gathered}
$$

Next we insert the values, from (4),

$$
c_{1}(n, 0, s)=0 ; \quad c_{1}(n, r, r)=\frac{r(1+y)}{r-n-1} ; \quad c_{2}(n, r, r+1)=\frac{(r+1)(n+1)}{(r-n)(n-r+1)},
$$

which gives
$g(n+1)-(x+1)(y+1) g(n)=\sum_{r \geq 1} \frac{r(1+y)}{r-n-1} G(n, r, r)-\sum_{r \geq 0} \frac{(r+1)(n+1)}{(r-n)(n-r+1)} G(n, r, r+1)$.

Now substitute the values $G(n, r, r)=\binom{n}{r}^{2}(x y)^{r}$, and $G(n, r, r+1)=\binom{n}{r}\binom{n}{r+1} x^{r} y^{r+1}$, and simplify the result, to obtain

$$
\begin{aligned}
g(n+1)-(x+1)(y+1) g(n)= & \sum_{r \geq 1} \frac{r(1+y)}{r-n-1}\binom{n}{r}^{2}(x y)^{r} \\
& -\sum_{r \geq 0} \frac{(r+1)(n+1)}{(r-n)(n-r+1)}\binom{n}{r}\binom{n}{r+1} x^{r} y^{r+1} \\
= & -(y+1) \sum_{r \geq 0}\binom{n}{r+1}\binom{n}{r} x^{r+1} y^{r+1}+\sum_{r \geq 0}\binom{n+1}{r}\binom{n}{r} x^{r} y^{r+1} \\
= & y \phi_{n}(x y)-\psi_{n}(x y),
\end{aligned}
$$

say, where

$$
\begin{equation*}
\phi_{n}(z)=\sum_{r=0}^{n}\binom{n}{r}^{2} z^{r} ; \quad \psi_{n}(z)=\sum_{r=0}^{n}\binom{n}{r+1}\binom{n}{r} z^{r+1} . \tag{5}
\end{equation*}
$$

Next, replace $g(n)$ by $f(n) /\left((1-p)^{n}(1-q)^{n}\right)$, noting that $(x+1)(y+1)=1 /((1-p)(1-q))$, to get

$$
\begin{equation*}
\frac{f(n+1)-f(n)}{((1-p)(1-q))^{n+1}}=y \phi_{n}(x y)-\psi_{n}(x y)=\frac{q}{1-q} \phi_{n}\left(\frac{p q}{(1-p)(1-q)}\right)-\psi_{n}\left(\frac{p q}{(1-p)(1-q)}\right) . \tag{6}
\end{equation*}
$$

Note that this gives a rapid method of computing $f(n)$ since each of the polynomials ϕ, ψ satisfies a three term recurrence, namely

$$
(n+2) \phi_{n+2}(z)=(z+1)(2 n+3) \phi_{n+1}(z)-(z-1)^{2}(n+1) \phi_{n}(z)
$$

and

$$
(n+1)(n+3) \psi_{n+2}(z)=(n+2)(2 n+3)(z+1) \psi_{n+1}(z)-(z-1)^{2}(n+2)(n+1) \psi_{n}(z)
$$

with initial conditions

$$
\phi_{0}(z)=1 ; \quad \phi_{1}(z)=1+z ; \psi_{0}(z)=0 ; \quad \psi_{1}(z)=z
$$

4 Analysis of the result

Regard p, q as fixed. Since $f(1)-f(0)>0, f$ is initially increasing. We want to discover the circumstances under which f will be decreasing steadily when n is large enough. This
means that we want to analyze $y \phi_{n}(z)-\psi_{n}(z)$ for fixed z and large n. To do this we show first that both the ϕ 's and the ψ 's are closely related to the Legendre polynomials.

First, it is well known that

$$
\phi_{n}(z)=(1-z)^{n} P_{n}\left(\frac{1+z}{1-z}\right) .
$$

Next, we have $\psi_{n}^{\prime}(z)=n \phi_{n}(z)-z \phi_{n}^{\prime}(z)$, from which

$$
\begin{aligned}
\psi_{n}(z) & =(n+1) \int_{0}^{z} \phi_{n}(t) d t-z \phi_{n}(z) \\
& =(n+1) \int_{0}^{z}(1-t)^{n} P_{n}\left(\frac{1+t}{1-t}\right) d t-z \phi_{n}(z) \\
& =(n+1) 2^{n+1} \int_{1}^{\frac{1+z}{1-z}} \frac{P_{n}(u) d u}{(1+u)^{n+2}}-z(1-z)^{n} P_{n}\left(\frac{1+z}{1-z}\right),
\end{aligned}
$$

thereby expressing the ψ 's in terms of the Legendre polynomials also.

5 Hypergeometric functions

Directly from its definition (5) we have that $\psi_{n}(z)=n z_{2} F_{1}[-n, 1-n ; 2 \mid z]$. On the other hand, from Rainville we have

$$
{ }_{2} F_{1}\left[-n, 1-n ; 2 \left\lvert\, \frac{1+x}{x-1}\right.\right]=\frac{1}{n+1}\left(\frac{2}{1-x}\right)^{n} P_{n}^{(1,-1)}(x),
$$

in which the P 's on the right are the Jacobi polynomials.

