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1 The problem

Stan Wagon told me about the following pretty coin tossing problem. Suppose Alice has a
coin with heads probability q and Bob has one with heads probability p. Suppose q < p.
Now each of them will toss their coin n times, and Alice wins iff she gets more heads than
Bob does. Evidently the game favors Bob, but for the given p, q, what is the choice of n that
maximizes Alice’s chances of winning?

Her chances of winning are

f(n) =
∑

r≥0

(

n

r

)

pr(1 − p)n−r
∑

s>r

(

n

s

)

qs(1 − q)n−s. (1)

Our task will be to find a recurrence for f(n).

2 The recurrence for the summand

Put
x = p/(1 − p), y = q/(1 − q), g(n) = f(n)/((1 − p)n(1 − q)n), (2)

so

g(n) =
∑

r≥0

∑

s>r

(

n

r

)(

n

s

)

xrys.

Let G(n, r, s) =
(

n

r

)(

n

s

)

xrys, be the summand. We use Zeilberger’s algorithm, and his
program MulZeil returns a recurrence

G(n+ 1, r, s) − (x+ 1)(y + 1)G(n, r, s) = (Kr − 1)(c1(n, r, s)G(n, r, s))

+(Ks − 1)(c2(n, r, s)G(n, r, s)), (3)
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where Kr, Ks are shift operators in their subscripts, and the ci are given by

c1 = c1(n, r, s) =
r(1 + y)

r − n− 1
; c2 = c2(n, r, s) =

s(n+ 1)

(s− n− 1)(n− r + 1)
. (4)

This is the recurrence for the summand, and it can be quickly verified by dividing through
by G(n, r, s), canceling all of the factorials, and noting that the resulting polynomial identity
states that 0 = 0.

3 The recurrence for the sum

To find the recurrence for the sum, first in the case where ties do not count for Bob, we sum
the recurrence (3) over s > r, and then sum the result over r ≥ 0. To do this we have first,
for every function φ of compact support,

∑

r≥0

∑

s>r

(Kr − 1)φ(r, s) = −
∑

s≥1

φ(0, s) +
∑

r≥1

φ(r, r),

and
∑

r≥0

∑

s>r

(Ks − 1)φ(r, s) = −
∑

r≥0

φ(r, r + 1).

Consequently there results

g(n+ 1) − (x+ 1)(y + 1)g(n) = −
∑

s≥1

c1(n, 0, s)G(n, 0, s) +
∑

r≥1

c1(n, r, r)G(n, r, r)

−
∑

r≥0

c2(n, r, r + 1)G(n, r, r + 1).

Next we insert the values, from (4),

c1(n, 0, s) = 0; c1(n, r, r) =
r(1 + y)

r − n− 1
; c2(n, r, r + 1) =

(r + 1)(n+ 1)

(r − n)(n− r + 1)
,

which gives

g(n+1)− (x+1)(y+1)g(n) =
∑

r≥1

r(1 + y)

r − n− 1
G(n, r, r)−

∑

r≥0

(r + 1)(n+ 1)

(r − n)(n− r + 1)
G(n, r, r+1).
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Now substitute the values G(n, r, r) =
(

n

r

)2
(xy)r, and G(n, r, r + 1) =

(

n

r

)(

n

r+1

)

xryr+1, and
simplify the result, to obtain

g(n+ 1) − (x+ 1)(y + 1)g(n) =
∑

r≥1

r(1 + y)

r − n− 1

(

n

r

)2

(xy)r

−
∑

r≥0

(r + 1)(n+ 1)

(r − n)(n− r + 1)

(

n

r

)(

n

r + 1

)

xryr+1

= −(y + 1)
∑

r≥0

(

n

r + 1

)(

n

r

)

xr+1yr+1 +
∑

r≥0

(

n + 1

r

)(

n

r

)

xryr+1

= yφn(xy) − ψn(xy),

say, where

φn(z) =
n
∑

r=0

(

n

r

)2

zr; ψn(z) =
n
∑

r=0

(

n

r + 1

)(

n

r

)

zr+1. (5)

Next, replace g(n) by f(n)/((1−p)n(1−q)n), noting that (x+1)(y+1) = 1/((1−p)(1−q)),
to get

f(n+ 1) − f(n)

((1 − p)(1 − q))n+1
= yφn(xy)−ψn(xy) =

q

1 − q
φn

(

pq

(1 − p)(1 − q)

)

−ψn

(

pq

(1 − p)(1 − q)

)

.

(6)
Note that this gives a rapid method of computing f(n) since each of the polynomials φ, ψ

satisfies a three term recurrence, namely

(n + 2)φn+2(z) = (z + 1)(2n+ 3)φn+1(z) − (z − 1)2(n + 1)φn(z),

and

(n + 1)(n+ 3)ψn+2(z) = (n+ 2)(2n+ 3)(z + 1)ψn+1(z) − (z − 1)2(n+ 2)(n+ 1)ψn(z),

with initial conditions

φ0(z) = 1; φ1(z) = 1 + z; ψ0(z) = 0; ψ1(z) = z.

4 Analysis of the result

Regard p, q as fixed. Since f(1) − f(0) > 0, f is initially increasing. We want to discover
the circumstances under which f will be decreasing steadily when n is large enough. This
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means that we want to analyze yφn(z) − ψn(z) for fixed z and large n. To do this we show
first that both the φ’s and the ψ’s are closely related to the Legendre polynomials.

First, it is well known that

φn(z) = (1 − z)nPn

(

1 + z

1 − z

)

.

Next, we have ψ′
n(z) = nφn(z) − zφ′

n(z), from which

ψn(z) = (n+ 1)
∫ z

0
φn(t)dt− zφn(z)

= (n+ 1)
∫ z

0
(1 − t)nPn

(

1 + t

1 − t

)

dt− zφn(z)

= (n+ 1)2n+1
∫ 1+z

1−z

1

Pn(u)du

(1 + u)n+2
− z(1 − z)nPn

(

1 + z

1 − z

)

,

thereby expressing the ψ’s in terms of the Legendre polynomials also.

5 Hypergeometric functions

Directly from its definition (5) we have that ψn(z) = nz 2F1[−n, 1 − n; 2|z]. On the other
hand, from Rainville we have

2F1

[

−n, 1 − n; 2

∣

∣

∣

∣

1 + x

x− 1

]

=
1

n+ 1

(

2

1 − x

)n

P (1,−1)
n (x),

in which the P ’s on the right are the Jacobi polynomials.
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