A One-Line Proof of Leversha's "Quartet of Isogonal Conjugates" Theorem

Shalosh B. EKHAD

In [L], Gerry Leversha spent quite a few pages, using human ingenuity and lots of previous knowledge, to prove the following elegant theorem (see [W] for the definition of Isogonal Conjugate).

Leversha's Quartet Theorem ([L]): Let $A B C D$ be a quadrilateral which is not cyclic. Let A^{*} be the isogonal conjugate of A with respect to $\triangle B C D$, and similarly let B^{*}, C^{*}, D^{*} the isogonal conjugates of $\triangle A D C, \triangle A B D, \triangle A B C$ respectively. Then A, B, C, and D are the circumcenters of $\Delta B^{*} C^{*} D^{*}, \Delta A^{*} C^{*} D^{*}, \Delta A^{*} B^{*} D^{*}$, and $\Delta A^{*} B^{*} C^{*}$.

Proof: Download the Maple package RENE.txt freely available from Doron Zeilberger's website https://sites.math.rutgers.edu/~zeilberg/PG/RENE.txt ,
start Maple, and type read 'RENE.txt': followed by Leversha() ; , and in one nano-second, you would get that it is true. The Maple code for proving Leversha's theorem is as follows:

```
T1 := Te(m, n); T2 := Te(m1, n1); A := [0, 0]; B := T1[3]; C := T2[3];
evalb(DeSq(IsogonalConjugate(m1, n1, B), A) = DeSq(IsogonalConjugate(m, n, C), A));
```


Explanation by Doron Zeilberger

Without loss of generality (by translating, rotating, and shrinking) we can assume that $A=(0,0)$, $D=(1,0)$,

$$
\tan \left(\frac{1}{2} \angle B A D\right)=m \quad, \quad \tan \left(\frac{1}{2} \angle A D B\right)=n \quad, \quad \tan \left(\frac{1}{2} \angle C A D\right)=M \quad, \quad \tan \left(\frac{1}{2} \angle A D C\right)=N \quad,
$$

so now $\Delta A D B$ and $\triangle A D C$ are what are called (in RENE.txt), $\mathrm{Te}(\mathrm{m}, \mathrm{n})$ and $\mathrm{Te}(\mathrm{M}, \mathrm{N})$. Using the straightforward IsogonalConjugate macro we get B^{*} and C^{*} and we just check that the 'distancesquared' (DeSq), between A and B^{*} and A and C^{*} are the same. Of course, this is also true about the distance between A and B^{*} and A and D^{*}, and by the transitivity of the $=$ relation, all three distances are equal and hence indeed A is the circumcenter of $\Delta B^{*} C^{*} D^{*}$.

But using this 'analytic' approach (rather than Leversha's synthetic approach) gives much more. LevershaRadius ($\mathrm{m}, \mathrm{n}, \mathrm{M}, \mathrm{N}$) gives that the exact value of the circumradius of $\Delta B^{*} C^{*} D^{*}$ is

$$
\frac{(N-n)(N n+1)\left(m^{2}+1\right)\left(M^{2}+1\right)}{((M N-1)(m n-1)+(M+N)(n+m))(M N(n+m)-m n(M+N)+M+N-m-n)} .
$$

RENE. txt can also tell you the exact locations of B^{*} and C^{*} :

$$
\begin{aligned}
& B^{*}=\left(\frac{(M m+M-m+1)(M m-M+m+1)(N n+1)(N-n)}{(M N(m n-1)+(M+N)(m+n)-m n+1)(M N(m+n)-m n(M+N)+M+N-m-n)},\right. \\
& \left.\frac{2(N n+1)(N-n)(M m+1)(M-m)}{(M N(m n-1)+(M+N)(m+n)-m n+1)(M N(m+n)-m n(M+N)+M+N-m-n)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C^{*}=\left(\frac{(M m+M-m+1)(M m-M+m+1)(N n+1)(N-n)}{(M N(m n-1)+(M+N)(m+n)-m n+1)(M N(m+n)-m n(M+N)+M+N-m-n)}\right. \\
& \left.-\frac{2(N n+1)(N-n)(M m+1)(M-m)}{(M N(m n-1)+(M+N)(m+n)-m n+1)(M N(m+n)-m n(M+N)+M+N-m-n)}\right)
\end{aligned}
$$

References

[L] Gerry Leversha, A quartet of isogonal conjugates, The Mathematical Gazette, 100, issue 548, (July, 2016), 336-341, (Note 100.23). Available from JSTOR.
[W] The Wikipedia Foundation, Isogonal Conjugate
https://en.wikipedia.org/wiki/Isogonal_conjugate

Shalosh B. Ekhad, c/o D. Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
Email: ShaloshBEkhad at gmail dot com

