Lagrange Inversion Without Tears (Analysis) (based on Henrici)

Doron ZEILBERGER

Def 1: A formal Laurent series (f.L.s) is

$$\sum_{N}^{\infty} a_n x^n$$

where a_n and x are symbols and N is an integer.

Def 2: $[x^n]f(x)$ is the coeff. of x^n in f(x).

Def 3: Resf(x) is the coeff. of x^{-1} in f(x).

Def 4: Given a sequence f_i of f.L.s. starting at N_i , their sum $\sum f_i$ makes sense if the N_i are bounded below and for every n, the set $\{[x^n]f_i(x)\}$ has only finitely many non-zero terms, and then the coeff. of x^n in sum $\sum f_i$ is by definition, that sum.

Def. 5

$$cx^N \sum_M^\infty a_n x^n := \sum_M^\infty ca_n x^{n+N} :$$

(convince yourself that the rhs makes sense)

Def. 6 If $f(x) = \sum_{n=1}^{\infty} a_n x^n$ is a f.L.s., and so is g(x) then

$$f(x)g(x) := \sum_{N}^{\infty} a_n x^n g(x)$$

(convince yourself that the rhs makes sense).

Def. 7

$$(\sum_{N}^{\infty} a_n x^n)' := \sum_{N}^{\infty} n a_n x^{n-1}$$

Prop. 1 (Product Rule): (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)

Proof: True for $f(x) = x^m$, $g(x) = x^n$, and hence in general, since both sides are linear in f(x), and in g(x).

Prop. 2: $(f(x)^k)' = kf(x)^{k-1}f'(x)$

Proof: True for k = 1, and then by induction on k, for positive k and for negative k by using the product rule applied to $1 = f(x)^k f(x)^{-k}$.

Prop. 3: (Chain Rule): If Φ and f(x) are f.L.s. then $(\Phi(f(x)))' = \Phi'(f(x))f'(x)$.

Proof: True for $\Phi = x^k$ thanks to Prop.2, now extend by linearity.

Prop. 4: If f(x) is a f.L.s. then Res(f'(x)) = 0.

Proof: $(x^n)' = nx^{n-1}$ can never be a multiple of x^{-1} , hence true for monomials, and by linearity for all f(x).

Prop. 5 (Integration by parts) If f(x) and g(x) are f.L.s. then Res(f'(x)g(x)) = -Res(f(x)g'(x)).

Proof: By Prop. 1 and 4.

Prop. 6 (change of variables): Let u(t) be a f.L.s starting at t (i.e. N = 1) and $\Psi(z)$ be any f.L.s. then $Res_t(u'(t)\Psi(u(t))) = Res_z\Psi(z)$

Proof: By linearity enough to prove it for monomials $\Psi(z) = z^k$. Both sides are 0 if $k \neq -1$, the right by definition 3, the left by Prop. 4. When k = -1 the right is 1, by definition and the left is $Res(u'(t)/u(t)) = (u_1 + 2u_2t + ...)/(u_1t + u_2t^2 + ...) = 1/t + O(1).$

Theorem (Lagrange Inversion Theorem): If u(t) and $\Phi(t)$ are f.L.s. starting at t and t^0 respectively, then $u(t) = t\Phi(u(t))$ implies $[t^n]u(t) = (1/n)[z^{n-1}]\Phi(z)^n$.

Proof:

$$[t^{n}]u(t) = Res_{t}(u(t)t^{-n-1}) = Res_{t}(u(t)(t^{-n}/(-n))') \stackrel{(5)}{=} (1/n)Res_{t}(u(t)'t^{-n}) \stackrel{given}{=} (1/n)Res_{t}(u'(t)(\Phi(u(t))/u(t))^{n}) \stackrel{(6)}{=} (1/n)Res_{z}(\Phi(z)^{n}/z^{n}) = (1/n)[z^{n-1}]\Phi(z)^{n} \quad \Box.$$

Added March 2, 2015: Generalizing, we have

Theorem (Generalized Lagrange Inversion Theorem): If u(t) and $\Phi(t)$ are f.L.s. starting at t and t^0 respectively, and G(t) is yet another formal power series, then $u(t) = t\Phi(u(t))$ implies $[t^n]G(u(t)) = (1/n)[z^{n-1}]G'(z)\Phi(z)^n$.

Proof:

$$[t^{n}]G(u(t)) = \operatorname{Res}_{t}(G(u(t))t^{-n-1}) = \operatorname{Res}_{t}(G(u(t))(t^{-n}/(-n))') \stackrel{(5)}{=} (1/n)\operatorname{Res}_{t}(G'(u(t))u(t)'t^{-n}) \stackrel{given}{=} (1/n)\operatorname{Res}_{t}(u'(t)G'(u(t))(\Phi(u(t))/u(t))^{n}) \stackrel{(6)}{=} (1/n)\operatorname{Res}_{z}G'(z)(\Phi(z)^{n}/z^{n}) = (1/n)[z^{n-1}]G'(z)\Phi(z)^{n} \quad \Box.$$