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Preface

Fabrice Rouillier and Paul Zimmermann [RZ] proposed a unified and very efficient algorithm for

finding real roots of univariate polynomials based on the good-old Descartes’ rule of signs. It

improved previous algorithms due to George Collins and Alkiviadis G. Akritas, Jeremy Johnson,

and Werner Krandick (see [RZ] for references). One reason it was so efficient was that in the

process, the algorithm constructs a certain binary tree, that is traversed in depth-first-search and

whenever there is a “jump” it is expensive. It turned out, that on average, there are not so many

jumps, explaining the efficiently.

This motivated Werner Krandick [K] to find explicit expressions for the expectations of the statistics

“number of jumps” and “sum of the jump-distances” (see below for the exact definitions). Using

clever but ad hoc human reasoning, he found that they were n−1
2 and n(n−1)

n+2 respectively (Theorem

11 of [K]).

Here we show the power of symbolic computation and experimental mathematics to do much more.

In particular, explicit expressions for the variances (namely n2−1
8n−4 and

2n(2n2−n−1)
n3+7n2+16n+12 respectively).

Better still, we will derive explicit expressions for the weight-enumerators of the set of full binary

trees according to these statistics (and the number of internal vertices) from which the expectation,

variance, and any number of higher moments can be easily deduced. Everything is implemented in

the Maple package Krandick.txt, available from the front of this article:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/krandick.html .

But first definitions.

Definitions

• A (full) binary tree is an unlabeled ordered tree, where every vertex has either 0 children (and

then it is called a leaf) or 2 children (and then it is called an internal vertex). A good way to define

these creatures is recursively. A binary tree has either 0 internal vertices (i.e. it only consists of

the root), or else the root has a left son that is the root of a binary tree TL and a right son, that

is the root of a binary tree TR.

In symbols: either T = . or T = [TL, TR].

• Let V (T ) be the number of internal vertices of the binary tree T . Note that it may be defined

recursively by:

V (.) = 0 , V ([TL, TR]) = V (TL) + V (TR) + 1 ,

since by removing the root, you lose an internal vertex.
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• J(T) denotes the number of “jumps” when you traverse it in depth-first-search (see [K]). It is best

defined recursively as follows

J(.) = 0

and

J([TL, TR]) =

{
J(TR), if TL = . ;
J(TL) + J(TR) + 1, otherwise.

We also need an auxiliary statistic, the depth of the rightmost leaf. It may be defined recursively

as follows.

D(.) = 0 ,

and

D([TL, TR]) = 1 + D(TR) .

Another statistic studied in [K] is the sum of jump distances. It may be defined recursively as

follows:

JD(.) = 0 ,

and

JD([TL, TR]) = JD(TL) + JD(TR) + D(TL) .

As noticed in [K], it is readily seen that JD(T ) + D(T ) = V (T ), so in some sense, as we will see

soon, the statistic JD is ‘easier’ than J .

Theorems

Theorem 0: Let B be the (infinite) set of all binary trees, and let f(x) be its weight-enumerator

according to the weight W0 defined by: W0(T ) := xV (T ). Then f(x) := W0(B), a certain formal

power series in x with integer coefficients, satisfies the quadratic equation

f(x) = 1 + x f(x)2 .

Proof: A binary tree is either trivial, with zero internal vertices, whose weight is x0 = 1 explaining

the ‘1’ on the right side of the equation, or it has a left tree and right tree, the x in front of the

second term on the right is because when you remove the root you lose an internal vertex, and TL

and TR range all over B, and since xa+b = xaxb, we have it.

Comment: Solving the quadratic equation gives

f(x) =
1−
√

1− 4x

2x
,
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that thanks to Isaac Newton’s binomial theorem, implies that the number of binary trees with n

internal vertices, let’s call it bn, is given by the good old Catalan numbers

bn =
(2n)!

n!(n + 1)!
.

See [CDZ] for many other proofs of this result. Also see [S] for many other combinatorial objects

counted by the Catalan numbers.

Theorem 1: Let B be the (infinite) set of all binary trees. Define a (tri-variate) weight, W1(T ) :=

xV (T )tD(T )qJ(T ), and let F (x, t, q) := W1(B), a certain formal power series in x with coefficients

that are polynomials of t and q. F (x, t, q) satisfies the following functional equation:

F (x, t, q) = 1 + x tF (x, 0, q)F (x, t, q) + xtq (F (x, 1, q)− F (x, 0, q)) F (x, t, q) .

Proof: Follows easily from the recursive definitions of V (T ), J(T ), and D(T ).

Theorem 2: An explicit expression, in terms of ‘radicals’, for F (x, t, q) is

F (x, t, q) = −−qtx + tx +
√

q2t2x2 − 2q t2x2 − 2q t2x + t2x2 − 2t2x + t2 + t− 2

2 (qtx + t2x− tx− t + 1)
.

Proof: Let the right side be G(x, t, q). We claim that

G(x, t, q)− (1 + x tG(x, 0, q)G(x, t, q) + xtq · (G(x, 1, q)−G(x, 0, q)) G(x, t, q)) = 0 ,

(check!). The theorem follows from the obvious uniqueness of the solution of this functional

equation (in the ring of formal power series in x, t, q).

Secret from Kitchen: There is a sophisticated method (that we dislike!) called the kernel method,

and presumably it could be done that way. But a much better way, is to hope that in addition

to the functional equation, mixing F (x, t, q) and F (x, 0, q) and F (x, 1, q), it also satisfies a pure

quadratic equation with coefficients that are polynomials in x, t. So, using the combinatorially

derived functional equation, we cranked out sufficiently many terms and guessed such an equation.

We found it! Of course, so far this is only a guess. Then we asked Maple to solve it in radicals.

This is still a guess. But once conjectured it is a routine verification, that Maple kindly did for

us. See procedure ProveJxtq() in our Maple package Krandick.txt.

Indeed, if you downloaded Krandick.txt to your own laptop (that has Maple), please type:

ProveJxtq(); ,

and before you know it you would get
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true.

Note that we needed the variable t, corresponding to the ‘depth of the rightmost leaf’, in order to

be able to set-up the functional equation, but we are really not interested in it! It is only a stepping

stone, a catalytic variable. At the end of the day, we can plug-in t = 1 and get the following

theorem.

Theorem 3: Let B be the (infinite) set of all binary trees. Define a (bivariate) weight, W2(T ) :=

xV (T )qJ(T ), and let H(x, q) := W2(B), a certain formal power series in x with coefficients that are

polynomials of q. We have:

H(x, q) = −−qx +
√

q2x2 − 2q x2 − 2qx + x2 − 2x + 1 + x− 1

2qx
.

Theorem 4: Let B be the (infinite) set of all binary trees. Define a (bivariate) weight, W3(T ) :=

xV (T )tD(T ), and let J(x, t) := W3(B), a certain formal power series in x with coefficients that are

polynomials of t. We have the following functional equation:

J(x, t) = 1 + x t J(x, 1)J(x, t) .

Proof: A member of B is either the singleton tree, ‘.’, or else can be written as T = [TL, TR]. Since

V (T ) = V (TL) + V (TR) + 1, and D(T ) = D(TR) + 1, the equation follows (the left tree TL does

not contribute to the t part, so the variable t is set to 1).

Solving for J(x, t) gives that it equals 1/(1 − xtJ(x, 1)). But J(x, 1) is nothing but our good old

f(x), the generating function for the Catalan numbers.

So we have

Theorem 5: An explicit expression for J(x, t) is

J(x, t) =
2

t
√

1− 4x− t + 2
.

Theorem 6: Let B be the (infinite) set of all binary trees. Define a (bivariate) weight, W4(T ) :=

xV (T )qJD(T ), and let K(x, q) := W4(B), a certain formal power series in x with coefficients that are

polynomials of q. We have the following explicit expression

K(x, q) =
2q√

−4qx + 1− 1 + 2q
.

Proof: We noticed above that D(T ) + JD(T ) = V (T ), hence K(x, q) = J(qx, 1
q ), and Theorem 6

follows from Theorem 5.
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Moments of The Jump Statistics

The weight-enumerator contains all the information needed for all the moments.

In particular The generating function of the quantity

Sum of the ‘number of jumps’

over all binary trees with n internal vertices, what Krandick [K] denoted by jn, is the coefficient of

xn in ∂
∂qH(x, q)|q=1 , that implies that the expected number of jumps is jn/bn, that happens to be

(n− 1)/2.

More generally, the generating function for the quantity

sum of the ‘rth-power of the number of jumps’

over all binary trees with n internal vertices, is

the coefficient of xn in (q ∂
∂q )rH(x, q)|q=1 .

Calling this quantity j
(r)
n , the r-th moment is j

(r)
n /bn .

From the usual moments, one easily derives the moments about the mean, in particular the variance.

Once we have explicit expressions for the moments about the mean (for as many as we desire), we

get the scaled moments and then we can take the limit as n goes to ∞. To our pleasant surprise

these (at least up to the 10-th moment) coincide with those of the normal distribution, 0 for odd

moments, and (2r)!
2rr! for the 2rth moment. This indicates that Krandick’s jump statistics is most

probably asymptotically normal. Can you prove it?

Added in the new version: Stephen Melczer and Tiadora Ruza brilliantly proved this asymptotic

normality. See their nice writeup:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/krandickSteveTia.pdf .

It is (probably) not hard to prove that the moments, and hence the moments about the mean, are

rational functions of n, and one can easily bound the degrees of the numerator and denominators.

So why not crank out many ‘data values’ and fit them into rational functions? That’s exactly what

we did. Notice that it is irrelevant whether we have an a priori proof that these are rational

functions. Once conjectured it is a routine (rigorous!) verification.

So we have the following experimentally derived, but fully rigorizable theorems.

Theorem 7.1: (first proved in [K]) The expected ‘number of jumps’ among all binary trees with

n internal vertices is

n− 1

2
.
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Theorem 7.2: The variance of the ‘number of jumps’ statistic among all binary trees with n

internal vertices is
n2 − 1

8n− 4
.

Theorem 7.3: The kurtosis (aka ‘scaled fourth moment-about-the-mean’) of the ‘number of jumps’

statistic among all binary trees with n internal vertices is

6n3 − 11n2 − 2n + 3

2n3 − 3n2 − 2n + 3
.

(Note that it tends to 3, as it should).

Theorem 7.4: The 6th scaled moment-about-the-mean of the ‘number of jumps’ statistic among

all binary trees with n internal vertices is

60n6 − 300n5 + 391n4 − 20n3 − 82n2 − 16n + 15

4n6 − 16n5 + 7n4 + 32n3 − 26n2 − 16n + 15
,

note that it tends to 1 · 3 · 5 = 15, as it should).

Theorem 7.5: The scaled 8th moment-about-the-mean of the ‘number of jumps’ statistic among

all binary trees with n internal vertices is

840n9 − 7980n8 + 27006n7 − 38933n6 + 23070n5 − 6937n4 + 3178n3 − 1167n2 − 142n + 105

8n9 − 60n8 + 118n7 + 75n6 − 402n5 + 135n4 + 418n3 − 255n2 − 142n + 105
.

(Note that it tends to 1 · 3 · 5 · 7 = 105, as it should).

For the explicit expression for the tenth scaled moment about the mean, look at the output file:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oKrandick1.txt .

Moments of The Sum of Jump Distances Statistic

This one is even more concentrated about the mean, since as will see below, the variance tends

to a constant.

Using our guessing methodology we have the following theorems.

Theorem 8.1: (first proved in [K]) The expected ‘sum of jump distances’ among all binary trees

with n internal vertices is
n (n− 1)

n + 2
.

Theorem 8.2: The variance of the statistic ‘sum of jump distances’ among all binary trees with

n internal vertices is
2n
(
2n2 − n− 1

)
n3 + 7n2 + 16n + 12

,
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(note that it converges to 4, hence the standard-deviation converges to 2).

Theorem 8.3: The skewness (aka scaled third moment-about-the-mean) of the statistic ‘sum of

jump distances’ among all binary trees with n internal vertices is

3
√

2
√

(n3−n2−8n+12)n
2n4+15n3+23n2−24n−16

2
,

(note that it converges to 3
2 ). In particular, this statistic is not asymptotically normal, since for

the latter to be true it should have been 0).

Theorem 8.4: The kurtosis of the statistic ‘sum of jump distances’ among all binary trees with n

internal vertices is
25n5 + 58n4 − 45n3 − 34n2 − 172n− 48

2 (2n4 + 17n3 + 30n2 − 29n− 20)n
,

(note that it converges to 25
4 ).

For explicit expressions for the fifth through the tenth scaled moments about the mean, look at the

output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oKrandick2.txt .

Conclusion

Werner Krandick used pure human cleverness to find explicit expressions for the first moments

of the jump statistics that he studied. But using symbolic computation and experimental

mathematics, one can go much further. We believe that this is the way to go.
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