Solution of American Mathematical Monthly \#11929 (Oct. 2016, Proposed by Donald Knuth)

Justin SEMONSEN

In $[\mathrm{K}]$, Donald Knuth proposed the following intriguing problem.
11929 Proposed by Donald Knuth, Stanford University, Stanford, CA. Let a_{n} be the number of ways in which a rectangular box that contains $6 n$ squares tiles in three rows of length $2 n$ can be split into two connected regions of size $3 n$ without cutting any tiles. Thus $a_{1}=3, a_{2}=19, a_{3}=85$. Taking $a_{0}=1$, find a closed form for the generating function $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$. What is the asymptotic nature of a_{n} as $n \rightarrow \infty$?

Ans.

$$
A(z)=\frac{z\left(2 z^{6}+15 z^{5}+21 z^{4}-38 z^{3}+40 z^{2}-9 z+1\right)}{(z-1)^{3}\left(z^{2}+4 z-1\right)^{2}}+\frac{(1-3 z)^{2}}{\left(1-4 z-z^{2}\right)^{2}} \cdot(1-4 z)^{-\frac{1}{2}} .
$$

The asymptotic of a_{n}, to order five is:

$$
\begin{aligned}
& a_{n} \asymp \frac{16}{\sqrt{\pi}} \cdot \frac{4^{n}}{\sqrt{n}} . \\
&\left(1-\frac{169}{8} n^{-1}+\frac{113713}{128} n^{-2}-\frac{54662275}{1024} n^{-3}+\frac{136066657419}{32768} n^{-4}-\frac{103820177963271}{262144} n^{-5}+O\left(\frac{1}{n^{6}}\right)\right)
\end{aligned}
$$

Proof: We first need a crucial lemma
Lemma: Let $f(r, w)$ be the number of configurations (with the white and black areas both connected) with r columns and w white squares (and hence $3 r-w$ black squares), then the bi-variate generating function

$$
F(x, y)=\sum_{r=0}^{\infty} \sum_{w=0}^{3 r} f(r, w) x^{r} y^{w}
$$

is given by the rational function

$$
F(x, y)=\frac{\operatorname{Top}(x, y)}{\operatorname{Bot}(x, y)}
$$

where the numerator, $\operatorname{Top}(x, y)$, is given by

$$
\begin{aligned}
& T o p(x, y)=-3 x^{4} y^{2}-x^{2} y^{6}+4 x^{4} y^{4}+12 x^{4} y^{7}+8 x^{6} y^{7}+25 x^{6} y^{8}+8 x^{6} y^{11}-6 x^{2} y-6 x^{2} y^{2} \\
& \begin{array}{l}
+25 x^{6} y^{10}-6 x^{2} y^{4}-6 x^{2} y^{5}-3 x^{4} y^{10}-2 x^{4} y^{9}+4 x^{4} y^{8}+2 x^{4} y^{6}+12 x^{4} y^{5}-6 x^{2} y^{3} \\
+x^{4}-x^{2}-2 x^{4} y^{3}+6 x^{6} y^{12}+28 x^{6} y^{9}+10 x^{12} y^{21}+4 x^{10} y^{21}-5 x^{12} y^{20}+12 x^{12} y^{22} \\
\quad+4 x^{12} y^{23}-5 x^{12} y^{16}+x^{8} y^{8}-28 x^{8} y^{11}-9 x^{8} y^{10}-42 x^{8} y^{12}+6 x^{6} y^{6} \\
\quad-6 x^{6} y^{5}-6 x^{6} y^{13}-28 x^{8} y^{13}-9 x^{8} y^{14}-8 x^{6} y^{14}-7 x^{8} y^{6}+32 x^{10} y^{11}+35 x^{10} y^{12} \\
-8 x^{6} y^{4}-2 x^{8} y^{7}-2 x^{6} y^{15}+x^{8} y^{16}-25 x^{10} y^{14}-38 x^{10} y^{15}+12 x^{10} y^{13}+35 x^{10} y^{18}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
-28 x^{12} y^{18}-22 x^{12} y^{19}+32 x^{10} y^{19}+12 x^{10} y^{17}-25 x^{10} y^{16}-2 x^{6} y^{3}-7 x^{8} y^{18} \\
-2 x^{8} y^{17}-4 x^{8} y^{19}+17 x^{10} y^{20}-22 x^{12} y^{17}+x^{4} y^{12}-x^{6} y^{16}+17 x^{10} y^{10} \\
-x^{6} y^{2}-4 x^{14} y^{21}-2 x^{14} y^{20} \\
-2 x^{14} y^{22}+4 x^{10} y^{9}-4 x^{8} y^{5}+12 x^{12} y^{14}+10 x^{12} y^{15}+4 x^{12} y^{13},
\end{gathered}
$$

and the denominator, $\operatorname{Bot}(x, y)$ is given by
$2(x+1)^{2}\left(x y^{2}+1\right)(x y+1)\left(x y^{3}+1\right)^{2}\left(x y+x y^{2}+1\right)(x-1)^{2}\left(x y^{2}-1\right)\left(x y^{3}-1\right)^{2}(x y-1)\left(x y+x y^{2}-1\right)$.

Sketch of proof: We set-up a "grammar" with ten states, corresponding to how a column can be colored, and connectivity considerations, set-up a system of ten equations and ten unknowns, add the solutions up, and get the above monster rational function.

Since $a_{n}=f(2 n, 3 n)$, we have

$$
A(z)=\sum_{n=0}^{\infty} f(2 n, 3 n) z^{n}
$$

is a 'slanted diagonal' of the rational function $F(x, y)$ of 'slope' $3 / 2$. By a famous theorem of Hillel Furstenberg $[\mathrm{F}]$, it is guaranteed to be an algebraic formal power series, that can be easily found by taking a certain residue, but we prefer to crank-out sufficiently many terms (40 suffice) of a_{n}, using $F(x, y)$, and fit them into an algebaric equation for $A(z)$, e.g. using Maple's gfun [listoalgeq] command. We get that $A(z)=A$ is a solution of the quadratic equation

$$
\begin{gathered}
-10 z+1-110 z^{3}+178 z^{5}-618 z^{6}+108 z^{10}+862 z^{7}-485 z^{8}+88 z^{9}+16 z^{11}+46 z^{2}+116 z^{4} \\
-2 z(4 z-1)\left(2 z^{6}+15 z^{5}+21 z^{4}-38 z^{3}+40 z^{2}-9 z+1\right)(z-1)^{3} A \\
+(4 z-1)\left(z^{2}+4 z-1\right)^{2}(z-1)^{6} A^{2}=0
\end{gathered}
$$

Using the quadratic formula, taking the right solution (that is a formal power series with positive coefficients), and simplifying, yields the closed form solution stated above for $A(z)$. Expanding $(1-4 z)^{-1 / 2}$ by the binomial theorem, using Stirling, and performint routine manipulations (all done automatically by Maple) produces the stated asymptotic formula for a_{n}.

Supporting Maple code can be gotten from
http://math.rutgers.edu/~zeilberg/tokhniot/DEKjs.txt .
Acknowledgment: I wish to thank Doron Zeilberger (see [Z]), for raising the challenge to solve Knuth's problem, in his "Experimental Mathematics" class that he is currently teaching, and I am currently taking.

References

[F] H. Furstenberg, Algebraic functions over finite fields, J. of Algebra 7 (1967), 271-277.
[K] Donald Knuth, Proposed problem \#11929, Amer. Math, Monthly 123 (2016), p. 831.
[Z] Doron Zeilberger, webpage of Rutgers University Experimental Mathematics (Math 640) Class, Fall 2016, http://www.math.rutgers.edu/~zeilberg/math640_17.html .

Justin Semonsen, Department of Mathematics, Rutgers University (New Brunswick), Hill CenterBusch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
Email: js2118 at math dot rutgers dot edu .

