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Abstract. In his classic essay “The Strong Law of Small Numbers”, Richard Guy gave numerous

cautionary tales where one can’t ‘jump to conclusions’ from the first few terms of a sequence. But

if you are cautious enough you can find many families of enumeration problems where it is very

safe to deduce the general pattern from the first few cases, obviating the need for either the human

or the computer to think too hard, and by using the ‘Keep It Simple Stupid’ principle (KISS

for short), one can easily derive many deep enumeration theorems by doing exactly what Richard

Guy told us not to do, computing the first few terms of the sequence and deducing the formula for

the general term. We admit that often ‘few’ should be replaced by ‘quite a few’, but it is still much

less painful than trying to figure out the intricate combinatorial structure by ‘conceptual’ means.

The Maple package

This article is accompanied by the Maple package

Dyck.txt available, along with ample input and output files from the front of thos article

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/kiss.html .

Enumerating Dyck Paths

Recall that a Dyck path of semi-length n is a walk in the 2-dimensional plane, from the origin

(0, 0) to (2n, 0) with atomic steps U := (1, 1) and D := (1,−1) that never goes below the x−axis,

i.e. that always stays in y ≤ 0.

For example, the five Dyck paths of semi-length 3 are

UUUDDD , UUDUDD , UUDDUD , UDUUDD , UDUDUD .

The number of Dyck paths of semi-length n is famously the Catalan number (2n)!
n!(n+1)! the most

popular, and important sequence in enumerative combinators (with no offense to Fibonacci), the

subject of a whole book by Guru Richard Stanely [St].

When we searched (on May 14, 2020) our favorite website, the OEIS [Sl] for the phrase ”Dyck

paths” we got back 1095 hits. Of course we did not have patience to read all of them but a random

browsing revealed that they enumerate Dyck paths with various restrictions. We will soon see

how to quickly enumerate ‘infinitely’ many such classes, but first let’s recall one of the many proofs

of the fact that the number of Dyck paths is indeed the venerable OEIS sequence A108, (2n)!
n!(n+1)! .
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Let a(n) be the desired number, i.e. the number of Dyck paths of semi-length n, and cosider the

ordinary generating function

f(x) =

∞∑
n=0

a(n)xn ,

which is the weight-enumerator of the set of all Dyck path, with weight(P ) := xSemiLength(P ).

It is readily seen that any Dyck path P is either empty or can be written uniquely (i.e. unam-

biguously) as P = U P1 DP2, where P1 and P2 are shorter Dyck paths, and vica versa, for any

Dyck paths P1, P2, U P1 DP2 is a Dyck path on its own right. Let P be the totality of all Dyck

paths, then we have the grammar

P = EmptyPath ∪ U P DP .

Applying the weight functional we get

f(x) = 1 + xf(x)2 .

To deduce that a(n) = (2n)!/(n!(n + 1)!), you can, inter alia

• (i) Solve the quadratic and use Newoton’s binomial theorem .

• (ii) Differentiate both sides getting a differential equation for f(x) that translates to a first-order

recurrence for a(n).

• (iii) Use Largrange Inversion (see [Z1] for a brief and lucid exposition).

How it All Started: Vladimir Retakh’s Question

Volodia Retakh asked whether there is a proof of the fact that the number of Dyck paths of semi-

length n such that the height all of all peaks is either 1 or even is given by the also famous Motzkin

numbers (OEIS sequence A1006), whose generating function satisfies

f(x) = 1 + xf(x) + x2f(x)2 .

We first tried to find a ‘conceptual’ proof generalizing the above proof, and indeed we found one,

by adapting the above classical proof enumerating all Dyck paths.

Let P1 be the set of Dyck paths whose peak-heights are never in {3, 5, 7, . . .}, and let f1 = f1(x)

be its weight enumerator.

Let P1 be any member of P1 then, it is either empty, or we can write

P1 = U P2 DP ′
1 ,

where P ′
1 ∈ P1 but P2 has the property that none of its peak-heights is in {2, 4, 6, . . .}. Let P2 be

the set of such Dyck paths.
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we can write the ‘grammar’

P1 = EmptyPath ∪ U P2 DP1 .

Let f2 = f2(x) be the weight-enumerator of P2.

Taking weights above, we have the equation

f1 = 1 + xf2f1 .

Alas, now we have to put-up with P2 and f2. Let P2 be any member of P2. Then either it is empty,

or it can be written as

U P3 DP ′
2 ,

where P ′
2 ∈ P2 but P3 is a Dyck path whose peak-heights are never in {1, 3, 5, 7, . . .}.

Let P3 be the set of such Dyck paths. We have the grammar

P2 = EmptyPath ∪ U P3 DP ′
1 .

Let f3 = f3(x) be the weight-enumerator of P3.

Taking weights we have another equation

f2 = 1 + xf3f2 .

It looks like we are doomed to have infinite regress, but let’s try one more time.

Let P3 be any member of P3. It is either empty, or We can write

P3 = U P4 DP ′
3

where P ′
3 ∈ P3 and P4 is a non-empty path avoiding peak-heights in {2, 4, 6, 8, . . .. But this looks

familiar, so the set of P4 is really P2\{EmptyPath}, and we have the grammar

P3 = EmptyPath ∪ U (P2\{EmptyPath})DP3 .

Taking weight, we get

f3 = 1 + x(f2 − 1)f3 .

We have a system of three algebrai equations

{f1 = 1 + xf2f1 , f2 = 1 + xf3f2 , f3 = 1 + x(f2 − 1)f3 } ,
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in the unknowns

{f1, f2, f3} .

Eliminiating f2, f3 yields the following algebraic equation for our object of desire f1.

f1(x) = 1 + xf1(x) + x2f1(x)2 ,

proving Volodia’s Retakh’s claim.

The KISS way

Now that we know that such an argument exists, and that the desired generating function f(x),

satisfies an algebraic equation of the form P (x, f(x)) = 0 for some bivariate polynomial P (x, y),

why not keep it simple, and rather than wrecking our brains (either human or machines)

we can collect sufficiently many terms of the desired sequence, and then use Maple’s command

gfun[listtoalgeq] (or our own home-made version) to guess that polynomaial P (x, f(x)).

Numerical Dynamical Programming to the rescue

Suppose that we don’t know anything, and want to compute the number of Dyck paths of semi-

length n, i.e. the number of walks using the fundamental steps U = (1, 1) and D = (1,−1). A

natural approach is to consider the more general quantity d(m, k), the number of walks from (0, 0)

to (m, k) staying weakly above the x-axis and ending at a down step. If the length of that

downward run is r, then the pervious peak was at (m − r, k + r), and we need to introduce the

auxiliary function u(m, k) the number of such paths thatend at (m, k) and end at an up step.

We have

d(m, k) =

m∑
r=1

u(m− r, k + r)

Analously

u(m, k) =

m∑
r=1

d(m− r, k − r)

Of course we have the obvious initial conditions d(0, 0) = 1, conditions d(m, k) = 0 and u(m, k) if

k > m.

Here is the short Maple code that does it

u:=proc(m,k) local r: option remember: if k>m then RETURN(0): fi: if m=0 then 0:

else add(d(m-r,k-r),r=1..k): fi: end:

d:=proc(m,k) local r: option remember: if k>m then RETURN(0): fi:

if m=0 then if k=0 then RETURN(1): else RETURN(0): fi: fi: add(u(m-r,k+r),r=1..m):

end:
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To the the desried sequence enumerating all Dyck paths of semi-length n for n from 1 to N , in

other words {d(2n, 0)}Nn=1 for any desired N we type

seq(d(2*n,0),n=1..N);:

Now, recall that we had to work much harder to, logically and conceptually to find the algebraic

equation for the Dyck paths considered by Volodia Retakh. To get the the analogous sequence we

only need to change the program by one line. Let’s call the analogous quantities u1(m, k) and

d1(m, k).

u1:=proc(m,k) local r: option remember: if ( k>m or k>1 and k mod 2=1) then RETURN(0):

fi: if m=0 then 0: else add(d1(m-r,k-r),r=1..k): fi: end:

d1:=proc(m,k) local r: option remember: if k>m then RETURN(0): fi: if m=0 then

if k=0 then RETURN(1): else RETURN(0): fi: fi: add(u1(m-r,k+r),r=1..m): end:

In other words, just declaring that u1(m, k) = 0 if the elevation k is an odd integer larger than 1.

Typing

seq(d1(2*n,0),n=1..N);

will let us get, very fast the first N terms, that would enable us to guess the algebaric equation

satisfied by the the generating function, that we can justify, a posteriori since we know that it

exists, saving us the mental agony of doing it logically, by figuring out the intricate ‘grammmer’.

The general case

Since it is so easy to tweak the numerical dynamical programming procedure, why not be as general

as can be? Let A, B, C, D be arbitrary sets of positive integers, either finite sets, or infinite sets

(like in Retakh’s case) that are arithmetical progressions (or unions thereof). We are interested in

counting Dyck paths that obey the following restrictions

• No peak can be of a height that belongs to A

• No valley can be of a height that belongs to B

• No upward run can be of a height that belongs to C

• No downward run can be of a height that belongs to D

Then we declare that u(m, k) = 0 if k ∈ A and d(m, k) = 0 if k ∈ B and otherwise

d(m, k) =
∑

1≤r≤m
r 6∈C

u(m− r, k + r)
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Analously

u(m, k) =
∑

1≤r≤m
r 6∈D

d(m− r, k − r) .

Then we get, very fast, sufficiently many terms to guess an algebraic equation, by finding {d(2n, 0)}Nn=1.

Guessing linear recurrences

It is well-known (see [KP], Theorem 6.1) that if f(x) is an algebaric formal power series (like

in our case), then it satisfies a linear differential equation with polynomial coefficients (i.e. it is

D-finite, and hence its sequence of coefficients, a(n) satisfies a linear recurrence equation with

polynomial coefficients, i.e. is P -recursive. While there are easy algorithms for finding these, they

do not always give the minimal recurrence, and once again, let’s keep it simple! Just guess such

a recurrence using undetermined coefficients, and we are guaranteed by the background ‘general

nonsense’ that everything is rigorously proved, and we don’t have to worry about Richard Guy’s

Strong Law of Small Numbers.

The Maple package Dyck.txt

Everything here, and more is implemented in the Maple package available from the front of this

article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/kiss.html .

There you would also find long web-books with many deep enumeration theorems. Let us illustrate

just one random example.

Typing Theorem({1},{},{2},{1},60,P,x,n,a,20,1000); gives

Sample Theorem: Let a(n) be the number of Dyck paths of semi-length n obeying the following

restrictions The height of a peak can not belong to {1}, no upward-run can belong to {2}, and no

downward-run can belong to {1}, then the generating function

f(x) :=

∞∑
n=1

a(n)xn ,

satisfies the algebraic equation

1 +
(
x4 + x3 + x2 + x

)
(P (x))

2
+
(
−x2 − x− 1

)
P (x) = 0 ,

and the sequence a(n) satisfies the following linear recurrence

a (n) =
(n− 2) a (n− 1)

n + 1
+ 2

(n− 2) a (n− 2)

n + 1
+

(4n− 11) a (n− 3)

n + 1

+
(8n− 25) a (n− 4)

n + 1
+ 6

(n− 4) a (n− 5)

n + 1
+

(5n− 22) a (n− 6)

n + 1
+ 3

(n− 5) a (n− 7)

n + 1
,
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subject to the initial conditions

a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 2, a(5) = 3, a(6) = 7, a(7) = 17 .

Just for fun

a(1000) =

5032496365637955067683347870950409710915701764522282276774675157243603802582866298

2112312106530063940708331389763348225007597598917857819768291846376430383787883303

3041735610967555667242236510761126249845944893288796213064321627892068195791748806

9930040634733745054315448220108085618003032954450492248812276239145688825121717358

7699286352230512754854626916997290850041113153875267233420342398420706028366390785

696361604283302005101154378 .

Conclusion

While Richard Guy’s cautionary tales [G1][G2] should be taken seriously, it is often safe to ignore

them. This is the case here, where keeping it simple is so much more efficient, and painless, than

doing it the ‘thinking way’.
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