Spelling Out Kathy's Unit 6

Tamar ZEILBERGER

An alternative way to do Unit 6 \#4

We have to prove that
If x^{*} is a local maximum of $\ln f(x)$ then it is also a local maximum of $f(x)$.
Putting $g(x)=\ln f(x)$, this is equivalent to the statement
If x^{*} is a local maximum of $g(x)$ then it is also a local maximum of $e^{g(x)}$.
(This is true because, of course, $f(x)=e^{\ln f(x)}$.)
But you don't need calculus for that! Pre-calculus suffices. Since the exponential function is an increasing function, $e^{g(x)}$ has the same ups and downs as $g(x)$.

So it is clear that $g(x)$ and $e^{g(x)}$ share their maxima (and minima!).
But, if you want to use calculus, you can.
We are given that $g^{\prime}\left(x^{*}\right)=0, g^{\prime \prime}\left(x^{*}\right)<0$.
Since $f(x)=e^{g(x)}$, we have, by the chain rule

$$
\begin{equation*}
f^{\prime}(x)=e^{g(x)} \cdot g^{\prime}(x) \tag{1}
\end{equation*}
$$

In particular

$$
f^{\prime}\left(x^{*}\right)=e^{g\left(x^{*}\right)} \cdot g^{\prime}\left(x^{*}\right)=0 .
$$

So we know right away that x^{*} is a critical point of $f(x)$.
To see whether it is a max or min, we need to express $f^{\prime \prime}(x)$ in terms of $g(x)$ and its derivatives.
Applying the product rule to Eq. (1), we have

$$
\begin{equation*}
f^{\prime \prime}(x)=\left(e^{g(x)} \cdot g^{\prime}(x)\right)^{\prime}=\left(e^{g(x)}\right)^{\prime} \cdot g^{\prime}(x)+e^{g(x)} \cdot g^{\prime \prime}(x) \tag{2}
\end{equation*}
$$

Using Eq. (1) again we have

$$
\begin{equation*}
f^{\prime \prime}(x)=e^{g(x)} \cdot g^{\prime}(x) \cdot g^{\prime}(x)+e^{g(x)} \cdot g^{\prime \prime}(x)=e^{g(x)} \cdot g^{\prime}(x)^{2}+e^{g(x)} \cdot g^{\prime \prime}(x) \tag{3}
\end{equation*}
$$

Factoring out $e^{g(x)}$ we finally get

$$
\begin{equation*}
f^{\prime \prime}(x)=e^{g(x)}\left(g^{\prime}(x)^{2}+g^{\prime \prime}(x)\right) \tag{3}
\end{equation*}
$$

Plugging-in $x=x^{*}$ we get

$$
\begin{equation*}
f^{\prime \prime}\left(x^{*}\right)=e^{g\left(x^{*}\right)}\left(g^{\prime}\left(x^{*}\right)^{2}+g^{\prime \prime}\left(x^{*}\right)\right) . \tag{4}
\end{equation*}
$$

But, we already know that $g^{\prime}\left(x^{*}\right)=0$, so

$$
\begin{equation*}
f^{\prime \prime}\left(x^{*}\right)=e^{g\left(x^{*}\right)}\left(0^{2}+g^{\prime \prime}\left(x^{*}\right)\right)=e^{g\left(x^{*}\right)}\left(0+g^{\prime \prime}\left(x^{*}\right)\right)=e^{g\left(x^{*}\right)} \cdot g^{\prime \prime}\left(x^{*}\right) . \tag{5}
\end{equation*}
$$

Since $e^{\text {anything }}$ is always positive, and by assumption $g^{\prime \prime}\left(x^{*}\right)<0$, and since positive times negative is negative, we proved that $f^{\prime \prime}\left(x^{*}\right)<0$. Combined with the above fact that $f^{\prime}\left(x^{*}\right)=0$, this proves that x^{*} is also a local maximum of $f(x)=e^{g(x)}$.

Comment: No offense to calculus, the above proof using precalculus is much better and more insightful. To formally prove that the exponential function e^{x} is an increasing function you could of course take the derivative $\left(e^{x}\right)^{\prime}=e^{x}$ and argue that it is always positive, but using high school algebra it is obvious that

Precalculus Lemma: If $b>a$ then $e^{b}>e^{a}$.
Proof: $b-a$ is positive hence $e^{b-a}>1$ hence $e^{b} / e^{a}>1$ hence $e^{b}>e^{a}$

