Spelling Out Kathy's Unit 6

Tamar ZEILBERGER

An alternative way to do Unit 6 #4

We have to prove that

If x^* is a **local maximum** of $\ln f(x)$ then it is also a local maximum of f(x).

Putting $g(x) = \ln f(x)$, this is **equivalent** to the statement

If x^* is a **local maximum** of g(x) then it is also a local maximum of $e^{g(x)}$.

(This is true because, of course, $f(x) = e^{\ln f(x)}$.)

But you don't need calculus for that! Pre-calculus suffices. Since the **exponential** function is an **increasing** function, $e^{g(x)}$ has the same **ups and downs** as g(x).

So it is clear that g(x) and $e^{g(x)}$ share their maxima (and minima!).

But, if you want to use calculus, you can.

We are given that $g'(x^*) = 0$, $g''(x^*) < 0$.

Since $f(x) = e^{g(x)}$, we have, by the **chain rule**

$$f'(x) = e^{g(x)} \cdot g'(x) \tag{1}$$

In particular

$$f'(x^*) = e^{g(x^*)} \cdot g'(x^*) = 0$$
 .

So we know right away that x^* is a **critical point** of f(x).

To see whether it is a max or min, we need to express f''(x) in terms of g(x) and its derivatives.

Applying the **product rule** to Eq. (1), we have

$$f''(x) = (e^{g(x)} \cdot g'(x))' = (e^{g(x)})' \cdot g'(x) + e^{g(x)} \cdot g''(x)$$
(2)

Using Eq. (1) again we have

$$f''(x) = e^{g(x)} \cdot g'(x) \cdot g'(x) + e^{g(x)} \cdot g''(x) = e^{g(x)} \cdot g'(x)^2 + e^{g(x)} \cdot g''(x)$$
(3)

Factoring out $e^{g(x)}$ we finally get

$$f''(x) = e^{g(x)}(g'(x)^2 + g''(x)) \quad . \tag{3}$$

Plugging-in $x = x^*$ we get

$$f''(x^*) = e^{g(x^*)}(g'(x^*)^2 + g''(x^*)) \quad .$$
(4)

But, we already know that $g'(x^*) = 0$, so

$$f''(x^*) = e^{g(x^*)}(0^2 + g''(x^*)) = e^{g(x^*)}(0 + g''(x^*)) = e^{g(x^*)} \cdot g''(x^*) \quad .$$
(5)

Since $e^{anything}$ is always **positive**, and by assumption $g''(x^*) < 0$, and since *positive times negative* is negative, we proved that $f''(x^*) < 0$. Combined with the above fact that $f'(x^*) = 0$, this proves that x^* is also a local maximum of $f(x) = e^{g(x)}$.

Comment: No offense to calculus, the above proof using **precalculus** is much better and more insightful. To formally prove that the exponential function e^x is an **increasing function** you could of course take the derivative $(e^x)' = e^x$ and argue that it is always positive, but using **high school algebra** it is obvious that

Precalculus Lemma: If b > a then $e^b > e^a$.

Proof: b - a is positive hence $e^{b-a} > 1$ hence $e^b/e^a > 1$ hence $e^b > e^a$