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This article is accompanied by the Maple packages

• http://www.math.rutgers.edu/~zeilberg/tokhniot/P123 ,

• http://www.math.rutgers.edu/~zeilberg/tokhniot/F123 ,

• http://www.math.rutgers.edu/~zeilberg/tokhniot/P1234 ,

• http://www.math.rutgers.edu/~zeilberg/tokhniot/F1234 ,

• http://www.math.rutgers.edu/~zeilberg/tokhniot/P12345 ,

• http://www.math.rutgers.edu/~zeilberg/tokhniot/F12345 ,

• http://www.math.rutgers.edu/~zeilberg/tokhniot/P123456 ,

to be described below. Lots of sample input and output files can be seen at:

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/Gwilf.html .

Introduction

Recall that the reduction of a finite list of k, say, distinct (real) numbers [a1, a2, . . . , ak] is the
unique permutation σ = [σ1, . . . , σk], of {1, . . . , k} such that a1 is the σ1-th largest element in the
list, a2 is the σ2-th largest element in the list, etc. In other words [a1, a2, . . . , ak] and σ are “order-
isomorphic”. For example, the reduction of [6, 3, 8, 2] is [3, 2, 4, 1] and the reduction of [π, γ, e, φ] is
[4, 1, 3, 2] (φ is the Golden Ratio).

Given a permutation π = π1 . . . πn and another permutation σ = [σ1, . . . , σk] (called a pattern),
we denote by Nσ(π) the number of instances 1 ≤ i1 < . . . < ik ≤ n such that the reduction of
πi1 . . . πik

is σ.

For example, if π = 51324 then
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N[1,2,3](π) = 2 (because π2π3π5 = 134 and π2π4π5 = 124 reduce to [1, 2, 3]).

N[1,3,2](π) = 1 (because π2π3π4 = 132 reduces to [1, 3, 2]).

N[2,1,3](π) = 1 (because π3π4π5 = 324 reduces to [2, 1, 3]).

N[2,3,1](π) = 0 (because none of the 10 length-three subsequences of π reduces to 231).

N[3,1,2](π) = 5 (because π1π2π3 = 513 and π1π2π4 = 512 and π1π2π5 = 514 and π1π3π5 = 534 and
π1π4π5 = 524 all reduce to [3, 1, 2]) .

N[3,2,1](π) = 1 (because π1π3π4 = 532 reduces to [3, 2, 1]).

Of course the sum of Nσ(π) over all k-permutations σ is
(
n
k

)
.

Fixing a pattern σ, the set of permutations π for which Nσ(π) = 0 (we say that π avoids σ) is called
the Wilf class of σ, and more generally, given a set of patterns S, the set of permutations for which
Nσ(π) = 0 for all σ ∈ S, is the Wilf class of that set. The first systematic study of enumerating
Wilf classes was undertaken in the pioneering paper by Rodica Simion and Frank Schmidt [SiSc].

The general question is extremely difficult (see [Wiki] and [Bo3]) and “explicit” answers are only
known for few short patterns (and sets of patterns), the increasing patterns [1, 2, . . . , k], and a few
other West-equivalent to them, giving the same enumeration. For example, even for the pattern
[1, 3, 2, 4] (http://oeis.org/A061552) the best known algorithm takes exponential time in n, and
it is very possible that that’s the best that one can do.

But for those patterns σ for which we know how to enumerate their Wilf classes, most importantly
the increasing patterns [1, . . . , k], it makes sense to ask the more general question:

Given a pattern σ, and a positive integer r, find a “formula”, or at least a polynomial-time algorithm
(thus answering the question in the sense of Herb Wilf[Wil]) that inputs a positive integer n and
outputs the number of permutations π of {1, . . . , n} for which Nσ(π) = r. We call such a class a
generalized Wilf class.

Ideally, we would like to have, given a pattern σ, an explicit formula, in n and q, for the generating
function (Sn denotes the set of permutations of {1, . . . , n})

Aσ(q, n) :=
∑

π∈Sn

qNσ(π) ,

then, for any fixed r, the sequence of coefficients of qr in Aσ(q, n) would give the sequence enumer-
ating permutations with exactly r occurrences of the pattern σ.

In fact, for patterns of length ≤ 2 there are nice answers. Trivially

A[1](q, n) := n! qn ,
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and almost-trivially (or at least classically)

A[2,1](q, n) := (1) (1 + q) · · · (1 + q + . . . + qn−1) = [n]! ,

the famous “q-analog” of n!. But things start to get complicated for patterns of length 3.

Past Work

For a very lucid and extremely engaging introduction to the subject, as well as the state-of-the-art,
we strongly recommend Miklós Bóna’s masterpiece [Bo3].

In [NZ], John Noonan and the second-named author initiated a functional equations-based approach
for enumerating generalized Wilf classes. In order to illustrate it, they reproved John Noonan’s[N]
combinatorially-proved result that the number of permutations of length n with exactly one occur-
rence of the pattern [1, 2, 3] equals 3

n

(
2n

n−3

)
. Recently a proof from the book of this result was given

by Alexander Burstein[Bu] (see also [Z1]).

In [NZ] it was conjectured that the number of permutations of length n with two occurrences of
the pattern [1, 2, 3] equals 59n2+117n+100

2n(2n−1)(n+5)

(
2n

n−4

)
. This conjecture was proved by Markus Fulmek[F],

using Dyck paths. A very interesting, purely human, approach was developed by David Callan[C]
who derived expressions for enumerating permutations of length n with three occurrences and four
occurrences.

In [NZ] it was also conjectured that the number of permutations of length n with one occurrence
of the pattern [1, 3, 2] equals n−2

2n

(
2n−2
n−1

)
. This conjecture was proved by Miklós Bóna[Bo1], who

later proceeded to prove[Bo2] the interesting fact that the sequences enumerating permutations
with exactly r occurrences of [1, 3, 2] is P -recursive (i.e. satisfies a homogeneous linear recurrence
with polynomial coefficients) for every r. In fact he proved the stronger result that the generating
functions are always algebraic. This was vindicated by Toufik Mansour and Alek Vainshtein[MV]
who gave an efficient algorithm to actually compute these generating functions, and they used it
to find explicit expressions for 1 ≤ r ≤ 5.

Another interesting but different “functional equation” approach, for patterns of length three, was
developed by Firro and Mansour[FM].

This Project

But so far, practically nothing is known for patterns of length larger than three and r > 0. In this
paper we will modify the approach of [NZ] in order to generate, in polynomial time, such sequences
for increasing patterns of any length [1, . . . , k]. That method can be extended to the patterns
[1, . . . , k− 2, k, k− 1] and possibly other families, but here we will only discuss increasing patterns.

Let us emphasize that the “brute force” approach requires exponential time, since we actually have
to construct the set of permutations of length n with the given specifications, and then take the
cardinality.
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Using the new algorithm to compute sufficiently many terms, we were able to conjecture explicit
formulas, in n, for the number of permutations of length n with exactly r occurrences of the
pattern [1, 2, 3], for 5 ≤ r ≤ 7, extending Fulmek’s[F] conjectures for r = 3 and r = 4. We
believe that the enumeration schemes, that our algorithms generate, should enable our computers
to conjecture holonomic representations for the more general quantities (see below), that once
guessed, should be amenable to automatic rigorous proving in the holonomic paradigm[Z2], using
Christoph Koutschan’s[K] far-reaching extensions and powerful implementations. But since these
conjectures are certainly true, and their formal proof would (probably) not yield any new insight,
we don’t think that it is worth the trouble to actually carry out the gory details, wasting both
humans’ time (it would require quite a bit of daunting programming) and the computers’ time (it
would take a very long time, due to the complexity of the schemes).

Now let’s recall the Noonan-Zeilberger Functional Equation Approach.

The Noonan-Zeilberger Functional Equation Approach

The starting point of the Noonan-Zeilberger[NZ] approach for enumerating generalized Wilf classes
is to derive a functional equation. Let’s review it with the simplest non-trivial case, that of the
length-3 increasing pattern [1, 2, 3].

In addition to the variable q, introduce n extra catalytic variables x1, . . . , xn, and define the weight
of a permutation π = π1 . . . πn of length n by

weight(π) := qN[1,2,3](π)
n∏

i=1

x
|{1≤a<b≤n;πa=i<πb}|
i ,

(as usual, for any set A, |A| denotes the number of elements of A). For example,

weight(12345) = q10x4
1x

3
2x

2
3x4 ,

weight(54321) = 1 ,

weight(21354) = q4x3
2x

3
1x

2
3 = q4x3

1x
3
2x

2
3 .

Let’s define the polynomial in the n + 1 variables

Pn(q;x1, . . . , xn) :=
∑

π∈Sn

weight(π) .

Let π = π1 . . . πn be a typical permutation of length n. Suppose π1 = i. Note that the number
of occurrences of the pattern [1, 2, 3] in π equals the number of occurrences of that pattern in the
beheaded permutation π2 . . . πn plus the number of the patterns [1, 2] in the beheaded permutation
π2 . . . πn where the “1” is i + 1, or i + 2, or . . . or n. Let π′ be the reduction to {1, . . . , n − 1} of
that beheaded permutation. We see that

weight(π) = xn−i
i weight(π′) | xi→qxi+1 , xi+1→qxi+2, ... , xn−1→qxn .
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The factor of xn−i
i is because converting π′ from a permutation of {1, . . . , n− 1} to a permutation

of {1, . . . , i−1, i+1, . . . , n}, and sticking an i at the front introduces n− i new [1, 2] patterns where
the “1” is i. This gives the Noonan-Zeilberger Functional Equation

Pn(q;x1, . . . , xn) =
n∑

i=1

xn−i
i Pn−1(q;x1, . . . , xi−1, qxi+1, . . . , qxn) . (NZFE1)

Having found Pn(q;x1, . . . , xn), we set the “catalytic” variables x1, . . . , xn all to 1 and get

fn(q) := A[1,2,3](q, n) = Pn(q; 1, 1, . . . , 1) .

Even though this is an “exponential-time” (and memory!) algorithm, it is much faster than the
direct weighted counting of all the n! permutations, and we were able to explicitly compute them
through n = 20.

This is implemented in procedure fn(n,q) in P123. Procedure L20(q); gives the pre-computed sequence of fn(n,q)

for n between 1 and 20 .

Here are the first few terms:

f1(q) = 1 , f2(q) = 2 , f3(q) = q + 5 , f4(q) = q4 + 3 q2 + 6 q + 14 ,

f5(q) = q10 + 4 q7 + 6 q5 + 9 q4 + 7 q3 + 24 q2 + 27 q + 42 ,

f6(q) = q20+5 q16+8 q13+6 q12+6 q11+16 q10+12 q9+24 q8+32 q7+37 q6+54 q5+74 q4+70 q3+133 q2+110 q+132 ,

f7(q) = q35+6 q30+10 q26+10 q25+8 q23+13 q22+30 q21+10 q20+32 q19+18 q18+62 q17+74 q16+24 q15+100 q14

+130 q13+104 q12+162 q11+191 q10+232 q9+260 q8+320 q7+387 q6+395 q5+507 q4+461 q3+635 q2+429 q+429 ,

f8(q) = q56 +7 q50 +12 q45 +15 q44 +10 q41 +16 q40 +40 q39 +18 q38 +47 q36 +38 q35 +68 q34 +60 q33

+58 q32 +66 q31 +154 q30 +138 q29 +115 q28 +156 q27 +252 q26 +324 q25 +228 q24 +288 q23 +537 q22

+466 q21 +546 q20 +656 q19 +682 q18 +1004 q17 +1047 q16 +886 q15 +1494 q14 +1456 q13 +1580 q12

+1818 q11+2077 q10+2182 q9+2389 q8+2544 q7+2864 q6+2570 q5+3008 q4+2528 q3+2807 q2+1638 q+1430 .
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For fn(q) for 9 ≤ n ≤ 20 see:

http://www.math.rutgers.edu/~zeilberg/tokhniot/oP123d .

Using this data, the computer easily finds rigorously-proved explicit expressions for the first six
moments (about the mean) of the random variable “number of occurrences of the pattern [1, 2, 3]”,
and from them verifies that, at least up to the sixth moment, this random variable is asymptotically
normal, as humanly proved (for all patterns) by Miklós Bóna[Bo4]. See:

http://www.math.rutgers.edu/~zeilberg/tokhniot/oP123a .

The “Perturbation” Approach

The equations of quantum field theory are (usually) impossible to solve exactly, but physicists got
around it by devising clever “approximate” methods using perturbation expansions, that only use
the first few terms in a potentially “infinite” (and intractable) series, but that suffice for all practical
purposes, using Feynman diagrams.

Of course, we are enumerators, and we want exact results, but suppose we only want to know the
sequences enumerating permutations with exactly s occurrences of the pattern [1, 2, 3] for s ≤ r for
some relatively small r, rather than for r =

(
n
3

)
, provided by the full

fn(q) = Pn(q ; 1 [n times ]) .

In the original article [NZ], for r = 0, Noonan and Zeilberger simply plugged-in q = 0 and x1 =
. . . = xn = 1, getting a simple enumeration scheme, that proved, for the n-th time, the classical
result that the number of permutations of length n that avoid the pattern 123 equals the Catalan
number (2n)!/(n!(n + 1)!). For r = 1, they differentiated Eq. (NZFE1) with respect to q, using
the multivariable calculus chain rule, and then plugged-in q = 0 and x1 = . . . = xn = 1. For r = 2
they did it again, but this turned out to be, for larger r, a Rube Goldberg nightmare, even for a
computer.

Here is a much easier way!

Recall that you are really only interested in fn(q) = Pn(q ; 1 [n times] ). Plugging it into (NZFE1)
gives

Pn(q ; 1 [n times ]) =
n∑

i=1

Pn−1(q ; 1 [ i− 1 times ] , q [n− i times ]) .

This forces us to put-up with expressions of the form

Pa0+a1(q; 1 [ a0 times] , q [ a1 times]) .

Plugging this into (NZFE1) yields

Pa0+a1(q; 1 [ a0 times] , q [ a1 times]) =
a0∑

i=1

Pa0+a1−1(q; 1 [ i−1 times] , q [ a0−i times] , q2[a1 times])
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+
a1∑

i=1

qa1−iPa0+a1−1(q; 1 [ a0 times] , q [ i− 1 times] , q2 [ a1 − i times]) .

This forces us, in turn, to consider expressions of the form

Pa0+a1+a2(q; 1 [ a0 times] , q [ a1 times] , q2 [ a2 times]),

that would force us to further consider expressions of the form

Pa0+a1+a2+a3(q; 1 [ a0 times ] , q [ a1 times] , q2 [ a2 times] , q3 [ a3 times]) ,

etc. etc., leading to an exponential explosion in both time and memory.

But, if we are only interested in the first r coefficients of fn(q), then we can take advantage of the
crucial lemma, that follows immediately from the definition of the weight.

Crucial Lemma: For s > r + 1, the coefficients of q0, q1, . . . , qr of

Pa0+a1+...+as(q; 1 [ a0 times ] , . . . qs−1 , [ as−1 times ] , qs [ as times ])

−Pa0+a1+...+as
(q; 1 [ a0 times] , . . . , qr [ar times ] , qr+1 [ ar+1 + ar+2 + . . . + as times ])

all vanish.

Let n := a1 + . . . + ar + ar+1. For any expression R and positive integer k, let R$k, denote
R . . . R[k times] for example q2$3 means q2, q2, q2. Also, for any polynomial p(q) in q, let p(r)(q)
denote the polynomial of degree r obtained by ignoring all powers of q larger than r, and let
CHOPr[ p(q) ] := p(r)(q).

Eq. (NZFE1) becomes

P (r)
n (q; 1$a0 , q$a1 , . . . , qr$ar, q

r+1$ar+1)

= CHOPr [
a0∑

i=1

P
(r)
n−1(q; 1$(i− 1) , q$(a0 − i) , q2$a1 , . . . , qr$ar−1 , qr+1$(ar + ar+1))

+
a1∑

i=1

qa1−i+a2+...+ar+1P
(r)
n−1(q; 1$a0 , q$(i− 1) , q2$(a1 − i) , . . . , qr$ar−1 , qr+1$(ar + ar+1))

+
a2∑

i=1

q2(a2−i+a3+...+ar+1)P
(r)
n−1(q; 1$a0 , q$a1 , q2$(i−1), q3$(a2−i) , . . . , qr$ar−1 , qr+1$(ar+ar+1))

+ . . . . . . . . .

+
ar+1∑
i=1

q(r+1)(ar+1−i)P
(r)
n−1(q; 1$a0 , q$a1 , q2$a2 . . . , qr$ar , qr+1$(ar+1 − 1)) ] .
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Now note that, because of the CHOPr operator in front, many terms automatically disappear,
because of the powers of q in front. The bottom line is that the computer can automatically
generate a scheme for computing the degree-r polynomials in q,

Fr(a0, . . . , ar+1)(q) := P
(r)
a0+...+ar+1

(q; 1 [ a0 times ] , q [ a1 times] , . . . , qr+1 [ ar+1 times ]) ,

with a0 + . . .+ar+1 = n and a0, . . . , ar+1 ≥ 0. The number of such quantities is the coefficient of zn

in 1/(1 − z)r+2 that equals (−1)r+2
(−(r+2)

n

)
=

(
r+n+1

r+1

)
terms. So each iteration involves O(nr+1)

evaluations and hence O(nr+2) additions and doing it n times yields an O(nr+3) algorithm for
finding our object of desire, the degree r polynomial in q:

f (r)
n (q) = Fr(n , 0 [ r + 1 times ])(q) .

Having found the scheme, the very same computer (or a different one), may use it to generate as
many terms as desired.

The Maple package P123

The Maple package P123 downloadable from

http://www.math.rutgers.edu/~zeilberg/tokhniot/P123 ,

implements the functional equation (NZFE1) and easily generated the first 25 terms of the enu-
merating sequences for 0 ≤ r ≤ 7. With this data, it empirically verified the already-known results
for the number of permutations with exactly r occurrences of the pattern [1, 2, 3] for 0 ≤ r ≤ 4
(due to Noonan[N] (r = 1), Fulmek[F] (r = 2), and Callan[C] (r = 3, 4), and made conjectures
for 5 ≤ r ≤ 7 as follows. Let ar(n) be the number of permutations of length n with exactly r

occurrences of the pattern [1, 2, 3].

a0(n) = 2
(2 n− 1)!

(n− 1)! (n + 1)!
.

a1(n) = 6
(2 n− 1)!

(n− 3)! (n + 3)!
.

a2(n) =
(2 n− 2)!

(n− 4)! (n + 5)!
· (59 n2 + 117 n + 100) .

a3(n) =
(2 n− 3)!

(n− 5)! (n + 7)!
· 4 n

(
113 n3 + 506 n2 + 937 n + 1804

)
.
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a4(n) =
(2n− 4)!

(n− 4)!(n + 9)!
·(

3561 n8 + 3126 n7 − 46806 n6 + 12384 n5 − 659091 n4 + 2630634 n3 + 5520576 n2 + 26283456 n− 39191040
)

.

a5(n) =
(2n− 5)!

(n− 5)!(n + 11)!
·

( 26246n10 + 136646 n9 − 115872 n8 + 22524 n7 − 9648450 n6 + 71304534 n5

+381205612n4 + 1607633896 n3 + 2800103664 n2 + 3611692800 n− 32891443200) .

a6(n) =
(2n− 6)!

(n− 6)!(n + 13)!
·

( 193311n12 + 2349954 n11 + 13035003 n10 + 95151030 n9 + 406430793 n8 + 2889552582 n7

+14335663329n6 + 60005854890 n5 + 313010684796 n4 + 1025692693464 n3

+1283595375168 n2 − 6909513045120 n− 28177269120000 ) .

a7(n) =
(2n− 7)!

(n− 5)!(n + 15)!
·

( 1386032n16 + 13111080 n15 + 22526480 n14 + 355187760 n13 − 1654450096 n12 + 10534951680 n11

+15797223760n10 − 305671694640 n9 + 3750695521216 n8 − 26631101348520 n7

−86395090065440 n6 − 636425872408320 n5 + 3647384624274048 n4

+11386434230674560 n3+103032675524966400 n2−157858417817856000 n−763734137886720000 ) .

Enumerating Permutations with r occurrences of the pattern [1,2,3,4] for small r via
a Noonan-Zeilberger Functional Equation

In addition to the variable q, we now introduce 2n extra catalytic variables x1, . . . , xn, and y1, . . . , yn,
and define the weight of a permutation π = π1 . . . πn of length n by

weight(π) := qN[1,2,3,4](π)
n∏

i=1

x
|{1≤a<b<c≤n ; πa=i<πb<πc}|
i · y|{1≤a<b≤n ; πa=i<πb}|

i .

For example,
weight([1, 2, 3, 4, 5, 6]) = q15x10

1 x6
2x

3
3x4y

5
1y4

2y3
3y2

4y5 ,

weight([6, 5, 4, 3, 2, 1]) = 1 ,

weight([3, 4, 5, 6, 1]) = qx3
3x4y

3
3y2

4y5 .
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Let us define the polynomial in the 2n + 1 variables

Pn(q;x1, . . . , xn; y1, . . . , yn) :=
∑

π∈Sn

weight(π) .

Let π = π1 . . . , πn be a typical permutation of length n. Suppose π1 = i. Note that the number
of occurrences of the pattern [1, 2, 3, 4] in π equals the number of occurrences of that pattern
in the beheaded permutation π2 . . . πn plus the number of the patterns [1, 2, 3] in the beheaded
permutation π2 . . . πn where the “1” is i + 1, or i + 2, or . . . or n. Let π′ be the reduction to
{1, . . . , n − 1} of that beheaded permutation. Also note that the number of occurrences of the
pattern [1, 2, 3] where the “1” is an i gets increased by the number of occurrences of the pattern
[1, 2] in the beheaded permutation, where the “1” is a j with j > i. We see that

weight(π) = yn−i
i weight(π′) | xi→qxi+1 , xi+1→qxi+2, ... , xn−1→qxn ; yi→xiyi+1 , yi+1→xiyi+2, ... , yn−1→xiyn .

The factor of yn−i
i is because converting π′ from a permutation of {1, . . . , n− 1} to a permutation

of {1, . . . , i−1, i+1, . . . , n}, and sticking an i at the front introduces n− i new [1, 2] patterns where
the “1” is i. This gives the Noonan-Zeilberger Functional Equation for the pattern [1, 2, 3, 4]:

Pn(q;x1, . . . , xn ; y1, . . . , yn) =
n∑

i=1

yn−i
i Pn−1(q;x1, . . . , xi−1, qxi+1, . . . , qxn ; y1, . . . , yi−1, xiyi+1, . . . , xiyn ) .

(NZFE2)
Having found Pn(q;x1, . . . , xn ; y1, . . . , yn), we set the “catalytic” variables x1, . . . , xn and y1, . . . , yn

all to 1 and get
gn(q) := A[1,2,3,4](q, n) = Pn(q; 1, 1, . . . , 1 ; 1, 1, . . . , 1) .

Even though this is an “exponential-time” (and memory!) algorithm, it is still faster than the
direct weighted counting of all the n! permutations, and we were able to explicitly compute them
through n = 10.

The first few polynomials are

g1(q) = 1 , g2(q) = 2 , g3(q) = 6 , g4(q) = q + 23 ,

g5(q) = q5 + 4 q2 + 12 q + 103 ,

g6(q) = q15 + 5 q9 + 8 q6 + 12 q5 + 6 q4 + 10 q3 + 63 q2 + 102 q + 513 ,

g7(q) = q35 + 6 q25 + 10 q19 + 18 q16 + 12 q15 + 13 q13 + 24 q11 + 32 q10 + 72 q9 + 10 q8 + 46 q7

+142 q6 + 116 q5 + 146 q4 + 196 q3 + 665 q2 + 770 q + 2761 ,
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g8(q) = q70+7 q55+12 q45+15 q41+10 q39+8 q36+28 q35+40 q32+41 q29+10 q28+24 q27+44 q26+84 q25

+24 q24 + 89 q23 + 12 q21 + 142 q20 + 136 q19 + 96 q18 + 115 q17 + 333 q16 + 156 q15 + 112 q14 + 312 q13

+199 q12+600 q11+573 q10+804 q9+503 q8+885 q7+1782 q6+1204 q5+2148 q4+2477 q3+5982 q2+5545 q+15767 .

For g9(q), g10(q) see: http://www.math.rutgers.edu/~zeilberg/tokhniot/oP1234d.

The obvious analog of the Crucial Lemma still holds, and one can get polynomial time (in n)
algorithms, to compute the number of permutations of length n with exactly r occurrences of the
pattern [1, 2, 3, 4]. Alas, because we have twice as many catalytic variables, the O(nr+3) becomes
O(n2r+5). Nevertheless, we were able to compute the first 70 terms for the case r = 1. Here are
the first 23 terms:

0, 0, 0, 1, 12, 102, 770, 5545, 39220, 276144, 1948212, 13817680, 98679990,

710108396, 5150076076, 37641647410, 277202062666, 2056218941678, 15358296210724,

115469557503753, 873561194459596, 6647760790457218, 50871527629923754 .

The rest can be viewed in: http://www.math.rutgers.edu/~zeilberg/tokhniot/oF1234a.

Manuel Kauers has programmed our algorithm in the numeric language C, and used clever pro-
gramming techniques to extend the table to 200 terms! We thank him dearly for allowing us to
post them. These can be viewed here

http://www.math.rutgers.edu/~zeilberg/tokhniot/oF1234bManuelKauers.

The Maple package P1234

Everything is implemented in the Maple package P1234. See the webpage of this article for sample
input and output files. The package F1234 is a more efficient implementation for a small number
of occurrences r. Typing Seq1(); in the Maple package F1234 would give the first 200 terms, of
the enumerating sequence for permutations with exactly one occurrence of the pattern [1, 2, 3, 4].
As mentioned above, these were computed by Manuel Kauers.

Beyond

Of course, the same reasoning applies to any increasing pattern [1, . . . , k] but we have, in addition
to q, (k − 2)n additional catalytic variables. For each specific r this implies a scheme that enables
one to compute in “polynomial” time (in n, but of course not in k or r) the desired numbers. For
the patterns [1, 2, 3, 4, 5] and [1, 2, 3, 4, 5, 6] (i.e. k = 5 and k = 6) this is implemented in Maple
packages P12345 (and its more efficient [for small r] version F12345) and P123456 respectively.
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Other Patterns

Even the case of pattern-avoidance, i.e. r = 0, is already extremely difficult in general. As we
mentioned above for the pattern [1, 3, 2, 4], there is no known polynomial time algorithm for enu-
merating permutations that avoid it. In other words the best known algorithm that inputs a positive
integer n and outputs the number of permutations of length n that avoid the pattern [1, 3, 2, 4] takes
exponentially many steps in n.

The status of the Noonan-Zeilberger Conjecture

The Noonan-Zeilberger conjecture, made in [NZ], asserts that for any pattern, and for any positive
integer r, the enumerating sequence of n-permutations with exactly r occurrences of that pattern
is always P -recursive, i.e. satisfies a linear recurrence equation with polynomial coefficients in n.
While still open, it seems much less likely to be true today than when it was first made almost twenty
years ago. Manuel Kauers informed us, using computations modulo the prime 45007, that even 400
terms of the enumerating sequence for permutations with exactly one occurrence of [1, 2, 3, 4] would
not suffice to guess a recurrence. In other words, if a recurrence does exist, it would be extremely
complicated. On the other hand, for [1, 2, 3, 4]-avoiding permutations, i.e. the case r = 0, there is
a simple second-order recurrence.

Going back to the problem of plain enumeration, for some few infinite families (see [Bo3] and
[Wiki]) exact formulas (for the avoiding, r = 0, case) are known, and the present approach would
hopefully be able to find polynomial-time schemes for r > 0, at least for some of them. We hope
to investigate this in a future paper.

acknowledegement: Many thanks are due to Manuel Kauers for his extensive computations, men-
tioned above, and to the referee for very helpful remarks that considerably improved the readability
of this article.
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