If A_{n} Has 6n Dyes in a Box, With Which He Has To Fling [at least] n Sixes, Then A_{n} Has An Easier Task Than A_{n+1}, at Eaven Luck

Doron ZEILBERGER

The probability of A_{n} succeeding, $1-\sum_{k=0}^{n-1}\binom{6 n}{k}\left(\frac{1}{6}\right)^{k}\left(\frac{5}{6}\right)^{6 n-k}$, from which the monotonicity is not obvious, can be rewritten (using zeillim in the package EKHAD accompanying [PWZ]) as:

$$
1-\sum_{m=0}^{n-1} \frac{2\left(94500 m^{4}+214830 m^{3}+171573 m^{2}+56243 m+6250\right)(6 m)!5^{5 m+2}}{(5 m+5)!m!6^{6 m+5}},
$$

from which the monotonicity is obvious. This generalizes, from $n=1,2$, to general n, a statement first proved, in 1693, by Mr. Isaac Newton, in response to a question of Mr. Samuel Pepys.

References

[PN] S. Pepys and I. Newton, correspondence, reproduced in American Statistician, Oct. 1960, 27-30.
[PWZ] M. Petkovsek, H.S. Wilf, and D. Zeilberger, " $A=B$ ", A.K.Peters, 1996. The accompanying Maple package EKHAD can be downloaded from the URLs given below.
\qquad

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA. zeilberg@math.temple.edu http://www.math.temple.edu/~zeilberg ftp://ftp.math.temple.edu/pub/zeilberg
Supported in part by the NSF. This version: 11/24/95. First version: Sep. 11, 1995.

